We argue that the current POW based consensus algorithm of the Bitcoin network suffers from a fundamental economic discrepancy between the real world transaction (txn) costs incurred by miners and the wealth that is being transacted. Put simply, whether one transacts 1 satoshi or 1 bitcoin, the same amount of electricity is needed when including this txn into a block. The notorious Bitcoin blockchain problems such as its high energy usage per txn or its scalability issues are, either partially or fully, mere consequences of this fundamental economic inconsistency. We propose making the computational cost of securing the txns proportional to the wealth being transferred, at least temporarily. First, we present a simple incentive based model of Bitcoin's security. Then, guided by this model, we augment each txn by two parameters, one controlling the time spent securing this txn and the second determining the fraction of the network used to accomplish this. The current Bitcoin txns are naturally embedded into this parametrized space. Then we introduce a sequence of hierarchical block structures (HBSs) containing these parametrized txns. The first of those HBSs exploits only a single degree of freedom of the extended txn, namely the time investment, but it allows already for txns with a variable level of trust together with aligned network fees and energy usage. In principle, the last HBS should scale to tens of thousands timely txns per second while preserving what the previous HBSs achieved. We also propose a simple homotopy based transition mechanism which enables us to relatively safely and continuously introduce new HBSs into the existing blockchain. Our approach is constructive and as rigorous as possible and we attempt to analyze all aspects of these developments, al least at a conceptual level. The process is supported by evaluation on recent transaction data.
We consider the task of constructing confidence intervals with differential privacy. We propose two private variants of the non-parametric bootstrap, which privately compute the median of the results of multiple "little" bootstraps run on partitions of the data and give asymptotic bounds on the coverage error of the resulting confidence intervals. For a fixed differential privacy parameter $\epsilon$, our methods enjoy the same error rates as that of the non-private bootstrap to within logarithmic factors in the sample size $n$. We empirically validate the performance of our methods for mean estimation, median estimation, and logistic regression with both real and synthetic data. Our methods achieve similar coverage accuracy to existing methods (and non-private baselines) while providing notably shorter ($\gtrsim 10$ times) confidence intervals than previous approaches.
Model-based clustering of moderate or large dimensional data is notoriously difficult. We propose a model for simultaneous dimensionality reduction and clustering by assuming a mixture model for a set of latent scores, which are then linked to the observations via a Gaussian latent factor model. This approach was recently investigated by Chandra et al. (2023). The authors use a factor-analytic representation and assume a mixture model for the latent factors. However, performance can deteriorate in the presence of model misspecification. Assuming a repulsive point process prior for the component-specific means of the mixture for the latent scores is shown to yield a more robust model that outperforms the standard mixture model for the latent factors in several simulated scenarios. The repulsive point process must be anisotropic to favor well-separated clusters of data, and its density should be tractable for efficient posterior inference. We address these issues by proposing a general construction for anisotropic determinantal point processes. We illustrate our model in simulations as well as a plant species co-occurrence dataset.
Many combinatorial optimization problems can be formulated as the search for a subgraph that satisfies certain properties and minimizes the total weight. We assume here that the vertices correspond to points in a metric space and can take any position in given uncertainty sets. Then, the cost function to be minimized is the sum of the distances for the worst positions of the vertices in their uncertainty sets. We propose two types of polynomial-time approximation algorithms. The first one relies on solving a deterministic counterpart of the problem where the uncertain distances are replaced with maximum pairwise distances. We study in details the resulting approximation ratio, which depends on the structure of the feasible subgraphs and whether the metric space is Ptolemaic or not. The second algorithm is a fully-polynomial time approximation scheme for the special case of $s-t$ paths.
We study an interacting particle method (IPM) for computing the large deviation rate function of entropy production for diffusion processes, with emphasis on the vanishing-noise limit and high dimensions. The crucial ingredient to obtain the rate function is the computation of the principal eigenvalue $\lambda$ of elliptic, non-self-adjoint operators. We show that this principal eigenvalue can be approximated in terms of the spectral radius of a discretized evolution operator obtained from an operator splitting scheme and an Euler--Maruyama scheme with a small time step size, and we show that this spectral radius can be accessed through a large number of iterations of this discretized semigroup, suitable for the IPM. The IPM applies naturally to problems in unbounded domains, scales easily to high dimensions, and adapts to singular behaviors in the vanishing-noise limit. We show numerical examples in dimensions up to 16. The numerical results show that our numerical approximation of $\lambda$ converges to the analytical vanishing-noise limit within visual tolerance with a fixed number of particles and a fixed time step size. Our paper appears to be the first one to obtain numerical results of principal eigenvalue problems for non-self-adjoint operators in such high dimensions.
Helmholtz decompositions of the elastic fields open up new avenues for the solution of linear elastic scattering problems via boundary integral equations (BIE) [Dong, Lai, Li, Mathematics of Computation,2021]. The main appeal of this approach is that the ensuing systems of BIE feature only integral operators associated with the Helmholtz equation. However, these BIE involve non standard boundary integral operators that do not result after the application of either the Dirichlet or the Neumann trace to Helmholtz single and double layer potentials. Rather, the Helmholtz decomposition approach leads to BIE formulations of elastic scattering problems with Neumann boundary conditions that involve boundary traces of the Hessians of Helmholtz layer potential. As a consequence, the classical combined field approach applied in the framework of the Helmholtz decompositions leads to BIE formulations which, although robust, are not of the second kind. Following the regularizing methodology introduced in [Boubendir, Dominguez, Levadoux, Turc, SIAM Journal on Applied Mathematics 2015] we design and analyze novel robust Helmholtz decomposition BIE for the solution of elastic scattering that are of the second kind in the case of smooth scatterers in two dimensions. We present a variety of numerical results based on Nystrom discretizations that illustrate the good performance of the second kind regularized formulations in connections to iterative solvers.
This paper is devoted to the study of a novel mixed Finite Element Method for approximating the solutions of fourth order variational problems subjected to a constraint. The first problem we consider consists in establishing the convergence of the error of the numerical approximation of the solution of a biharmonic obstacle problem. The contents of this section are meant to generalise the approach originally proposed by Ciarlet \& Raviart, and then complemented by Ciarlet \& Glowinski. The second problem we consider amounts to studying a two-dimensional variational problem for linearly elastic shallow shells subjected to remaining confined in a prescribed half-space. We first study the case where the parametrisation of the middle surface for the linearly elastic shallow shell under consideration has non-zero curvature, and we observe that the numerical approximation of this model via a mixed Finite Element Method based on conforming elements requires the implementation of the additional constraint according to which the gradient matrix of the dual variable has to be symmetric. However, differently from the biharmonic obstacle problem previously studied, we show that the numerical implementation of this result cannot be implemented by solely resorting to Courant triangles. Finally, we show that if the middle surface of the linearly elastic shallow shell under consideration is flat, the symmetry constraint required for formulating the constrained mixed variational problem announced in the second part of the paper is not required, and the solution can thus be approximated by solely resorting to Courant triangles. The theoretical results we derived are complemented by a series of numerical experiments.
Differential abundance analysis is a key component of microbiome studies. While dozens of methods for it exist, currently, there is no consensus on the preferred methods. Correctness of results in differential abundance analysis is an ambiguous concept that cannot be evaluated without employing simulated data, but we argue that consistency of results across datasets should be considered as an essential quality of a well-performing method. We compared the performance of 14 differential abundance analysis methods employing datasets from 54 taxonomic profiling studies based on 16S rRNA gene or shotgun sequencing. For each method, we examined how the results replicated between random partitions of each dataset and between datasets from independent studies. While certain methods showed good consistency, some widely used methods were observed to produce a substantial number of conflicting findings. Overall, the highest consistency without unnecessary reduction in sensitivity was attained by analyzing relative abundances with a non-parametric method (Wilcoxon test or ordinal regression model) or linear regression (MaAsLin2). Comparable performance was also attained by analyzing presence/absence of taxa with logistic regression.
Landslides are one of the most critical and destructive geohazards. Widespread development of human activities and settlements combined with the effects of climate change on weather are resulting in a high increase in the frequency and destructive power of landslides, making them a major threat to human life and the economy. In this paper, we explore methodologies to map newly-occurred landslides using Sentinel-2 imagery automatically. All approaches presented are framed as a bi-temporal change detection problem, requiring only a pair of Sentinel-2 images, taken respectively before and after a landslide-triggering event. Furthermore, we introduce a novel deep learning architecture for fusing Sentinel-2 bi-temporal image pairs with Digital Elevation Model (DEM) data, showcasing its promising performances w.r.t. other change detection models in the literature. As a parallel task, we address limitations in existing datasets by creating a novel geodatabase, which includes manually validated open-access landslide inventories over heterogeneous ecoregions of the world. We release both code and dataset with an open-source license.
The problems of optimal recovering univariate functions and their derivatives are studied. To solve these problems, two variants of the truncation method are constructed, which are order-optimal both in the sense of accuracy and in terms of the amount of involved Galerkin information. For numerical summation, it has been established how the parameters characterizing the problem being solved affect its stability.
Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.