We establish the asymptotic behaviour of the sum of squared residuals autocovariances and autocorrelations for the class of multi-variate power transformed asymmetric models. We then derive a portmanteau test. We establish the asymptotic distribution of the proposed statistics. These asymptotic results are illustrated by Monte Carlo experiments. An application to a bivariate real financial data is also proposed.
Theoretical developments in sequential Bayesian analysis of multivariate dynamic models underlie new methodology for causal prediction. This extends the utility of existing models with computationally efficient methodology, enabling routine exploration of Bayesian counterfactual analyses with multiple selected time series as synthetic controls. Methodological contributions also define the concept of outcome adaptive modelling to monitor and inferentially respond to changes in experimental time series following interventions designed to explore causal effects. The benefits of sequential analyses with time-varying parameter models for causal investigations are inherited in this broader setting. A case study in commercial causal analysis-- involving retail revenue outcomes related to marketing interventions-- highlights the methodological advances.
This study proposes a novel image contrast enhancement method based on image projection onto the squared eigenfunctions of the two dimensional Schr\"odinger operator. This projection depends on a design parameter \texorpdfstring{\(\gamma\)}{gamma} which is proposed to control the pixel intensity during image reconstruction. The performance of the proposed method is investigated through its application to color images. The selection of \texorpdfstring{\(\gamma\)}{gamma} values is performed using k-means, which helps preserve the image spatial adjacency information. Furthermore, multi-objective optimization using the Non dominated Sorting Genetic Algorithm II (NSAG2) algorithm is proposed to select the optimal values of \texorpdfstring{\(\gamma\)}{gamma} and the semi-classical parameter h from the 2DSCSA. The results demonstrate the effectiveness of the proposed method for enhancing image contrast while preserving the inherent characteristics of the original image, producing the desired enhancement with almost no artifacts.
This paper introduces a new numerical scheme for a system that includes evolution equations describing a perfect plasticity model with a time-dependent yield surface. We demonstrate that the solution to the proposed scheme is stable under suitable norms. Moreover, the stability leads to the existence of an exact solution, and we also prove that the solution to the proposed scheme converges strongly to the exact solution under suitable norms.
We consider the task of constructing confidence intervals with differential privacy. We propose two private variants of the non-parametric bootstrap, which privately compute the median of the results of multiple "little" bootstraps run on partitions of the data and give asymptotic bounds on the coverage error of the resulting confidence intervals. For a fixed differential privacy parameter $\epsilon$, our methods enjoy the same error rates as that of the non-private bootstrap to within logarithmic factors in the sample size $n$. We empirically validate the performance of our methods for mean estimation, median estimation, and logistic regression with both real and synthetic data. Our methods achieve similar coverage accuracy to existing methods (and non-private baselines) while providing notably shorter ($\gtrsim 10$ times) confidence intervals than previous approaches.
Based on the mathematical-physical model of pavement mechanics, a multilayer elastic system with interlayer friction conditions is constructed. Given the complex boundary conditions, the corresponding variational inequalities of the partial differential equations are derived, so that the problem can be analyzed under the variational framework. First, the existence and uniqueness of the solution of the variational inequality is proved; then the approximation error of the numerical solution based on the finite element method is analyzed, and when the finite element space satisfies certain approximation conditions, the convergence of the numerical solution is proved; finally, in the trivial finite element space, the convergence order of the numerical solution is derived. The above conclusions provide basic theoretical support for solving the displacement-strain problem of multilayer elastic systems under the framework of variational inequalities.
This article aims to study efficient/trace optimal designs for crossover trials with multiple responses recorded from each subject in the time periods. A multivariate fixed effects model is proposed with direct and carryover effects corresponding to the multiple responses. The corresponding error dispersion matrix is chosen to be either of the proportional or the generalized Markov covariance type, permitting the existence of direct and cross-correlations within and between the multiple responses. The corresponding information matrices for direct effects under the two types of dispersions are used to determine efficient designs. The efficiency of orthogonal array designs of Type $I$ and strength $2$ is investigated for a wide choice of covariance functions, namely, Mat($0.5$), Mat($1.5$) and Mat($\infty$). To motivate these multivariate crossover designs, a gene expression dataset in a $3 \times 3$ framework is utilized.
We consider the task of constructing confidence intervals with differential privacy. We propose two private variants of the non-parametric bootstrap, which privately compute the median of the results of multiple "little" bootstraps run on partitions of the data and give asymptotic bounds on the coverage error of the resulting confidence intervals. For a fixed differential privacy parameter $\epsilon$, our methods enjoy the same error rates as that of the non-private bootstrap to within logarithmic factors in the sample size $n$. We empirically validate the performance of our methods for mean estimation, median estimation, and logistic regression with both real and synthetic data. Our methods achieve similar coverage accuracy to existing methods (and non-private baselines) while providing notably shorter ($\gtrsim 10$ times) confidence intervals than previous approaches.
Linear non-Gaussian causal models postulate that each random variable is a linear function of parent variables and non-Gaussian exogenous error terms. We study identification of the linear coefficients when such models contain latent variables. Our focus is on the commonly studied acyclic setting, where each model corresponds to a directed acyclic graph (DAG). For this case, prior literature has demonstrated that connections to overcomplete independent component analysis yield effective criteria to decide parameter identifiability in latent variable models. However, this connection is based on the assumption that the observed variables linearly depend on the latent variables. Departing from this assumption, we treat models that allow for arbitrary non-linear latent confounding. Our main result is a graphical criterion that is necessary and sufficient for deciding the generic identifiability of direct causal effects. Moreover, we provide an algorithmic implementation of the criterion with a run time that is polynomial in the number of observed variables. Finally, we report on estimation heuristics based on the identification result, explore a generalization to models with feedback loops, and provide new results on the identifiability of the causal graph.
We consider the application of the generalized Convolution Quadrature (gCQ) to approximate the solution of an important class of sectorial problems. The gCQ is a generalization of Lubich's Convolution Quadrature (CQ) that allows for variable steps. The available stability and convergence theory for the gCQ requires non realistic regularity assumptions on the data, which do not hold in many applications of interest, such as the approximation of subdiffusion equations. It is well known that for non smooth enough data the original CQ, with uniform steps, presents an order reduction close to the singularity. We generalize the analysis of the gCQ to data satisfying realistic regularity assumptions and provide sufficient conditions for stability and convergence on arbitrary sequences of time points. We consider the particular case of graded meshes and show how to choose them optimally, according to the behaviour of the data. An important advantage of the gCQ method is that it allows for a fast and memory reduced implementation. We describe how the fast and oblivious gCQ can be implemented and illustrate our theoretical results with several numerical experiments.
Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.