亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Security vulnerability repair is a difficult task that is in dire need of automation. Two groups of techniques have shown promise: (1) large code language models (LLMs) that have been pre-trained on source code for tasks such as code completion, and (2) automated program repair (APR) techniques that use deep learning (DL) models to automatically fix software bugs. This paper is the first to study and compare Java vulnerability repair capabilities of LLMs and DL-based APR models. The contributions include that we (1) apply and evaluate five LLMs (Codex, CodeGen, CodeT5, PLBART and InCoder), four fine-tuned LLMs, and four DL-based APR techniques on two real-world Java vulnerability benchmarks (Vul4J and VJBench), (2) design code transformations to address the training and test data overlapping threat to Codex, (3) create a new Java vulnerability repair benchmark VJBench, and its transformed version VJBench-trans and (4) evaluate LLMs and APR techniques on the transformed vulnerabilities in VJBench-trans. Our findings include that (1) existing LLMs and APR models fix very few Java vulnerabilities. Codex fixes 10.2 (20.4%), the most number of vulnerabilities. (2) Fine-tuning with general APR data improves LLMs' vulnerability-fixing capabilities. (3) Our new VJBench reveals that LLMs and APR models fail to fix many Common Weakness Enumeration (CWE) types, such as CWE-325 Missing cryptographic step and CWE-444 HTTP request smuggling. (4) Codex still fixes 8.3 transformed vulnerabilities, outperforming all the other LLMs and APR models on transformed vulnerabilities. The results call for innovations to enhance automated Java vulnerability repair such as creating larger vulnerability repair training data, tuning LLMs with such data, and applying code simplification transformation to facilitate vulnerability repair.

相關內容

Automatic weeding technologies have attained a lot of attention lately, because of the harms and challenges weeds are causing for livestock farming, in addition to that weeds reduce yields. We are targeting automatic and mechanical Rumex weeding in open pasture fields using light weight mobile field robot technologies. We describe a mobile weeding robot with GNSS navigation, 3D computer vision for weed detection, and a robot arm with a mechanical weeding tool. Our main contribution is showing the feasibility of light weight robot, sensor, and tool technologies in mechanical removal of weed seedlings.

In scenarios with limited available data, training the function-to-function neural PDE solver in an unsupervised manner is essential. However, the efficiency and accuracy of existing methods are constrained by the properties of numerical algorithms, such as finite difference and pseudo-spectral methods, integrated during the training stage. These methods necessitate careful spatiotemporal discretization to achieve reasonable accuracy, leading to significant computational challenges and inaccurate simulations, particularly in cases with substantial spatiotemporal variations. To address these limitations, we propose the Monte Carlo Neural PDE Solver (MCNP Solver) for training unsupervised neural solvers via the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles. Compared to other unsupervised methods, MCNP Solver naturally inherits the advantages of the Monte Carlo method, which is robust against spatiotemporal variations and can tolerate coarse step size. In simulating the trajectories of particles, we employ Heun's method for the convection process and calculate the expectation via the probability density function of neighbouring grid points during the diffusion process. These techniques enhance accuracy and circumvent the computational issues associated with Monte Carlo sampling. Our numerical experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency compared to other unsupervised baselines. The source code will be publicly available at: //github.com/optray/MCNP.

We experimentally evaluated the accuracy with which material properties can be estimated through object compression by two standard parallel jaw grippers and a force/torque sensor mounted at the robot wrist, with a professional biaxial compression device used as reference. Gripper effort versus position curves were obtained and transformed into stress/strain curves. The modulus of elasticity was estimated at different strain points and the effect of multiple compression cycles (precycling), compression speed, and the gripper surface area on estimation was studied. Viscoelasticity was estimated using the energy absorbed in a compression/decompression cycle, the Kelvin-Voigt, and Hunt-Crossley models. We found that: (1) slower compression speeds improved elasticity estimation, while precycling or surface area did not; (2) the robot grippers, even after calibration, were found to have a limited capability of delivering accurate estimates of absolute values of Young's modulus and viscoelasticity; (3) relative ordering of material characteristics was largely consistent across different grippers; (4) despite the nonlinear characteristics of deformable objects, fitting linear stress/strain approximations led to more stable results than local estimates of Young's modulus; (5) the Hunt-Crossley model worked best to estimate viscoelasticity, from a single object compression. A two-dimensional space formed by elasticity and viscoelasticity estimates obtained from a single grasp is advantageous for the discrimination of the object material properties. We demonstrated the applicability of our findings in a mock single stream recycling scenario, where plastic, paper, and metal objects were correctly separated from a single grasp, even when compressed at different locations on the object. The data and code are publicly available.

Loop invariants are properties of a program loop that hold before and after each iteration of the loop. They are often employed to verify programs and ensure that algorithms consistently produce correct results during execution. Consequently, the generation of invariants becomes a crucial task for loops. We specifically focus on polynomial loops, where both the loop conditions and assignments within the loop are expressed as polynomials. Although computing polynomial invariants for general loops is undecidable, efficient algorithms have been developed for certain classes of loops. For instance, when all assignments within a while loop involve linear polynomials, the loop becomes solvable. In this work, we study the more general case where the polynomials exhibit arbitrary degrees. Applying tools from algebraic geometry, we present two algorithms designed to generate all polynomial invariants for a while loop, up to a specified degree. These algorithms differ based on whether the initial values of the loop variables are given or treated as parameters. Furthermore, we introduce various methods to address cases where the algebraic problem exceeds the computational capabilities of our methods. In such instances, we identify alternative approaches to generate specific polynomial invariants.

Anomaly detection and localization without any manual annotations and prior knowledge is a challenging task under the setting of unsupervised learning. The existing works achieve excellent performance in the anomaly detection, but with complex networks or cumbersome pipelines. To address this issue, this paper explores a simple but effective architecture in the anomaly detection. It consists of a well pre-trained encoder to extract hierarchical feature representations and a decoder to reconstruct these intermediate features from the encoder. In particular, it does not require any data augmentations and anomalous images for training. The anomalies can be detected when the decoder fails to reconstruct features well, and then errors of hierarchical feature reconstruction are aggregated into an anomaly map to achieve anomaly localization. The difference comparison between those features of encoder and decode lead to more accurate and robust localization results than the comparison in single feature or pixel-by-pixel comparison in the conventional works. Experiment results show that the proposed method outperforms the state-of-the-art methods on MNIST, Fashion-MNIST, CIFAR-10, and MVTec Anomaly Detection datasets on both anomaly detection and localization.

In a Stackelberg congestion game (SCG), a leader aims to maximize their own gain by anticipating and manipulating the equilibrium state at which the followers settle by playing a congestion game. Often formulated as bilevel programs, large-scale SCGs are well known for their intractability and complexity. Here, we attempt to tackle this computational challenge by marrying traditional methodologies with the latest differentiable programming techniques in machine learning. The core idea centers on replacing the lower-level equilibrium problem with a smooth evolution trajectory defined by the imitative logit dynamic (ILD), which we prove converges to the equilibrium of the congestion game under mild conditions. Building upon this theoretical foundation, we propose two new local search algorithms for SCGs. The first is a gradient descent algorithm that obtains the derivatives by unrolling ILD via differentiable programming. Thanks to the smoothness of ILD, the algorithm promises both efficiency and scalability. The second algorithm adds a heuristic twist by cutting short the followers' evolution trajectory. Behaviorally, this means that, instead of anticipating the followers' best response at equilibrium, the leader seeks to approximate that response by only looking ahead a limited number of steps. Our numerical experiments are carried out over various instances of classic SCG applications, ranging from toy benchmarks to large-scale real-world examples. The results show the proposed algorithms are reliable and scalable local solvers that deliver high-quality solutions with greater regularity and significantly less computational effort compared to the many incumbents included in our study.

Humans frequently make decisions with the aid of artificially intelligent (AI) systems. A common pattern is for the AI to recommend an action to the human who retains control over the final decision. Researchers have identified ensuring that a human has appropriate reliance on an AI as a critical component of achieving complementary performance. We argue that the current definition of appropriate reliance used in such research lacks formal statistical grounding and can lead to contradictions. We propose a formal definition of reliance, based on statistical decision theory, which separates the concepts of reliance as the probability the decision-maker follows the AI's recommendation from challenges a human may face in differentiating the signals and forming accurate beliefs about the situation. Our definition gives rise to a framework that can be used to guide the design and interpretation of studies on human-AI complementarity and reliance. Using recent AI-advised decision making studies from literature, we demonstrate how our framework can be used to separate the loss due to mis-reliance from the loss due to not accurately differentiating the signals. We evaluate these losses by comparing to a baseline and a benchmark for complementary performance defined by the expected payoff achieved by a rational decision-maker facing the same decision task as the behavioral decision-makers.

Notation conventions for rigid transformations are as diverse as they are fundamental to the field of robotics. A well-defined convention that is practical, consistent and unambiguous is essential for the clear communication of ideas and to foster collaboration between researchers. This work presents an analysis of conventions used in state-of-the-art robotics research, defines a new notation convention, and provides software packages to facilitate its use. To shed some light on the current state of notation conventions in robotics research, this work presents an analysis of the ICRA 2023 proceedings, focusing on the notation conventions used for rigid transformations. A total of 1655 papers were inspected to identify the convention used, and key insights about trends and usage preferences are derived. Based on this analysis, a new notation convention called RIGID is defined, which complies with the "ISO 80000 Standard on Quantities and Units". The RIGID convention is designed to be concise yet unambiguous and easy to use. Additionally, this work introduces a LaTeX package that facilitates the use of the RIGID notation in manuscripts preparation through simple customizable commands that can be easily translated into variable names for software development.

This work is on a user-friendly reduced basis method for solving a family of parametric PDEs by preconditioned Krylov subspace methods including the conjugate gradient method, generalized minimum residual method, and bi-conjugate gradient method. The proposed methods use a preconditioned Krylov subspace method for a high-fidelity discretization of one parameter instance to generate orthogonal basis vectors of the reduced basis subspace. Then large-scale discrete parameter-dependent problems are approximately solved in the low-dimensional Krylov subspace. As shown in the theory and experiments, only a small number of Krylov subspace iterations are needed to simultaneously generate approximate solutions of a family of high-fidelity and large-scale systems in the reduced basis subspace. This reduces the computational cost dramatically because (1) to construct the reduced basis vectors, we only solve one large-scale problem in the high-fidelity level; and (2) the family of large-scale problems restricted to the reduced basis subspace have much smaller sizes.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司