亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work aims at making a comprehensive contribution in the general area of parametric inference for partially observed diffusion processes. Established approaches for likelihood-based estimation invoke a numerical time-discretisation scheme for the approximation of the (typically intractable) transition dynamics of the Stochastic Differential Equation (SDE) model over finite time periods. The scheme is applied for a step-size that is either a user-selected tuning parameter or determined by the data. Recent research has highlighted the critical effect of the choice of numerical scheme on the behaviour of derived parameter estimates in the setting of hypo-elliptic SDEs. In brief, in our work, first, we develop two weak second order `sampling schemes' (to cover both the hypo-elliptic and elliptic SDE classes) and generate accompanying `transition density schemes' of the SDE (i.e., approximations of the SDE transition density). Then, we produce a collection of analytic results, providing a complete theoretical framework that solidifies the proposed schemes and showcases advantages from their incorporation within SDE calibration methods. We present numerical results from carrying out classical or Bayesian inference, for both elliptic and hypo-elliptic SDE models.

相關內容

Mortality patterns at a subnational level or across subpopulations are often used to examine the health of a population or for designing health policies. In large populations, the estimation of mortality indicators is rather straightforward. In small populations, however, death counts are driven by stochastic variation. In order to deal with this problem, demographers have proposed a variety of methods which all make use of knowledge about the shape of human mortality schedules. In practice, it is not readily clear how the methods relate to each other hindering informed decisions when choosing a method. We aim to provide guidance. First, we review recent demographic methods for the estimation of mortality schedules in small populations - emphasizing data requirements and ease of use. Second, by means of a simulation study, we evaluate the performance of three main classes of methods with respect to exposure size as well as sensitivity to the incorporated demographic knowledge. Often neglected by previous studies, we show that there is considerable variability in the performance across ages and regions and that this performance can depend on the choice of incorporated demographic knowledge.

Robust Markov Decision Processes (MDPs) are getting more attention for learning a robust policy which is less sensitive to environment changes. There are an increasing number of works analyzing sample-efficiency of robust MDPs. However, most works study robust MDPs in a model-based regime, where the transition probability needs to be estimated and requires $\mathcal{O}(|\mathcal{S}|^2|\mathcal{A}|)$ storage in memory. A common way to solve robust MDPs is to formulate them as a distributionally robust optimization (DRO) problem. However, solving a DRO problem is non-trivial, so prior works typically assume a strong oracle to obtain the optimal solution of the DRO problem easily. To remove the need for an oracle, we first transform the original robust MDPs into an alternative form, as the alternative form allows us to use stochastic gradient methods to solve the robust MDPs. Moreover, we prove the alternative form still preserves the role of robustness. With this new formulation, we devise a sample-efficient algorithm to solve the robust MDPs in a model-free regime, from which we benefit lower memory space $\mathcal{O}(|\mathcal{S}||\mathcal{A}|)$ without using the oracle. Finally, we validate our theoretical findings via numerical experiments and show the efficiency to solve the alternative form of robust MDPs.

In this paper, we introduce a new simple approach to developing and establishing the convergence of splitting methods for a large class of stochastic differential equations (SDEs), including additive, diagonal and scalar noise types. The central idea is to view the splitting method as a replacement of the driving signal of an SDE, namely Brownian motion and time, with a piecewise linear path that yields a sequence of ODEs $-$ which can be discretised to produce a numerical scheme. This new way of understanding splitting methods is inspired by, but does not use, rough path theory. We show that when the driving piecewise linear path matches certain iterated stochastic integrals of Brownian motion, then a high order splitting method can be obtained. We propose a general proof methodology for establishing the strong convergence of these approximations that is akin to the general framework of Milstein and Tretyakov. That is, once local error estimates are obtained for the splitting method, then a global rate of convergence follows. This approach can then be readily applied in future research on SDE splitting methods. By incorporating recently developed approximations for iterated integrals of Brownian motion into these piecewise linear paths, we propose several high order splitting methods for SDEs satisfying a certain commutativity condition. In our experiments, which include the Cox-Ingersoll-Ross model and additive noise SDEs (noisy anharmonic oscillator, stochastic FitzHugh-Nagumo model, underdamped Langevin dynamics), the new splitting methods exhibit convergence rates of $O(h^{3/2})$ and outperform schemes previously proposed in the literature.

A Deep Neural Network (DNN) is a composite function of vector-valued functions, and in order to train a DNN, it is necessary to calculate the gradient of the loss function with respect to all parameters. This calculation can be a non-trivial task because the loss function of a DNN is a composition of several nonlinear functions, each with numerous parameters. The Backpropagation (BP) algorithm leverages the composite structure of the DNN to efficiently compute the gradient. As a result, the number of layers in the network does not significantly impact the complexity of the calculation. The objective of this paper is to express the gradient of the loss function in terms of a matrix multiplication using the Jacobian operator. This can be achieved by considering the total derivative of each layer with respect to its parameters and expressing it as a Jacobian matrix. The gradient can then be represented as the matrix product of these Jacobian matrices. This approach is valid because the chain rule can be applied to a composition of vector-valued functions, and the use of Jacobian matrices allows for the incorporation of multiple inputs and outputs. By providing concise mathematical justifications, the results can be made understandable and useful to a broad audience from various disciplines.

Using gradient descent (GD) with fixed or decaying step-size is a standard practice in unconstrained optimization problems. However, when the loss function is only locally convex, such a step-size schedule artificially slows GD down as it cannot explore the flat curvature of the loss function. To overcome that issue, we propose to exponentially increase the step-size of the GD algorithm. Under homogeneous assumptions on the loss function, we demonstrate that the iterates of the proposed \emph{exponential step size gradient descent} (EGD) algorithm converge linearly to the optimal solution. Leveraging that optimization insight, we then consider using the EGD algorithm for solving parameter estimation under both regular and non-regular statistical models whose loss function becomes locally convex when the sample size goes to infinity. We demonstrate that the EGD iterates reach the final statistical radius within the true parameter after a logarithmic number of iterations, which is in stark contrast to a \emph{polynomial} number of iterations of the GD algorithm in non-regular statistical models. Therefore, the total computational complexity of the EGD algorithm is \emph{optimal} and exponentially cheaper than that of the GD for solving parameter estimation in non-regular statistical models while being comparable to that of the GD in regular statistical settings. To the best of our knowledge, it resolves a long-standing gap between statistical and algorithmic computational complexities of parameter estimation in non-regular statistical models. Finally, we provide targeted applications of the general theory to several classes of statistical models, including generalized linear models with polynomial link functions and location Gaussian mixture models.

We propose a multilevel Monte Carlo-FEM algorithm to solve elliptic Bayesian inverse problems with "Besov random tree prior". These priors are given by a wavelet series with stochastic coefficients, and certain terms in the expansion vanishing at random, according to the law of so-called Galton-Watson trees. This allows to incorporate random fractal structures and large deviations in the log-diffusion, which occur naturally in many applications from geophysics or medical imaging. This framework entails two main difficulties: First, the associated diffusion coefficient does not satisfy a uniform ellipticity condition, which leads to non-integrable terms and thus divergence of standard multilevel estimators. Secondly, the associated space of parameters is Polish, but not a normed linear space. We address the first point by introducing cut-off functions in the estimator to compensate for the non-integrable terms, while the second issue is resolved by employing an independence Metropolis-Hastings sampler. The resulting algorithm converges in the mean-square sense with essentially optimal asymptotic complexity, and dimension-independent acceptance probabilities.

In this work, we study a natural nonparametric estimator of the transition probability matrices of a finite controlled Markov chain. We consider an offline setting with a fixed dataset, collected using a so-called logging policy. We develop sample complexity bounds for the estimator and establish conditions for minimaxity. Our statistical bounds depend on the logging policy through its mixing properties. We show that achieving a particular statistical risk bound involves a subtle and interesting trade-off between the strength of the mixing properties and the number of samples. We demonstrate the validity of our results under various examples, such as ergodic Markov chains, weakly ergodic inhomogeneous Markov chains, and controlled Markov chains with non-stationary Markov, episodic, and greedy controls. Lastly, we use these sample complexity bounds to establish concomitant ones for offline evaluation of stationary Markov control policies.

Sensitivity analysis measures the influence of a Bayesian network's parameters on a quantity of interest defined by the network, such as the probability of a variable taking a specific value. Various sensitivity measures have been defined to quantify such influence, most commonly some function of the quantity of interest's partial derivative with respect to the network's conditional probabilities. However, computing these measures in large networks with thousands of parameters can become computationally very expensive. We propose an algorithm combining automatic differentiation and exact inference to efficiently calculate the sensitivity measures in a single pass. It first marginalizes the whole network once, using e.g. variable elimination, and then backpropagates this operation to obtain the gradient with respect to all input parameters. Our method can be used for one-way and multi-way sensitivity analysis and the derivation of admissible regions. Simulation studies highlight the efficiency of our algorithm by scaling it to massive networks with up to 100'000 parameters and investigate the feasibility of generic multi-way analyses. Our routines are also showcased over two medium-sized Bayesian networks: the first modeling the country-risks of a humanitarian crisis, the second studying the relationship between the use of technology and the psychological effects of forced social isolation during the COVID-19 pandemic. An implementation of the methods using the popular machine learning library PyTorch is freely available.

Classical quickest change detection algorithms require modeling pre-change and post-change distributions. Such an approach may not be feasible for various machine learning models because of the complexity of computing the explicit distributions. Additionally, these methods may suffer from a lack of robustness to model mismatch and noise. This paper develops a new variant of the classical Cumulative Sum (CUSUM) algorithm for the quickest change detection. This variant is based on Fisher divergence and the Hyv\"arinen score and is called the Score-based CUSUM (SCUSUM) algorithm. The SCUSUM algorithm allows the applications of change detection for unnormalized statistical models, i.e., models for which the probability density function contains an unknown normalization constant. The asymptotic optimality of the proposed algorithm is investigated by deriving expressions for average detection delay and the mean running time to a false alarm. Numerical results are provided to demonstrate the performance of the proposed algorithm.

The problem of generalization and transportation of treatment effect estimates from a study sample to a target population is central to empirical research and statistical methodology. In both randomized experiments and observational studies, weighting methods are often used with this objective. Traditional methods construct the weights by separately modeling the treatment assignment and study selection probabilities and then multiplying functions (e.g., inverses) of their estimates. In this work, we provide a justification and an implementation for weighting in a single step. We show a formal connection between this one-step method and inverse probability and inverse odds weighting. We demonstrate that the resulting estimator for the target average treatment effect is consistent, asymptotically Normal, multiply robust, and semiparametrically efficient. We evaluate the performance of the one-step estimator in a simulation study. We illustrate its use in a case study on the effects of physician racial diversity on preventive healthcare utilization among Black men in California. We provide R code implementing the methodology.

北京阿比特科技有限公司