A bipartite covering of a (multi)graph $G$ is a collection of bipartite graphs, so that each edge of $G$ belongs to at least one of them. The capacity of the covering is the sum of the numbers of vertices of these bipartite graphs. In this note we establish a (modest) strengthening of old results of Hansel and of Katona and Szemer\'edi, by showing that the capacity of any bipartite covering of a graph on $n$ vertices in which the maximum size of an independent set containing vertex number $i$ is $\alpha_i$, is at least $\sum_i \log_2 (n/\alpha_i).$ We also obtain slightly improved bounds for a recent result of Kim and Lee about the minimum possible capacity of a bipartite covering of complete multigraphs.
In this paper, we propose a fully discrete soft thresholding trigonometric polynomial approximation on $[-\pi,\pi],$ named Lasso trigonometric interpolation. This approximation is an $\ell_1$-regularized discrete least squares approximation under the same conditions of classical trigonometric interpolation on an equidistant grid. Lasso trigonometric interpolation is sparse and meanwhile it is an efficient tool to deal with noisy data. We theoretically analyze Lasso trigonometric interpolation for continuous periodic function. The principal results show that the $L_2$ error bound of Lasso trigonometric interpolation is less than that of classical trigonometric interpolation, which improved the robustness of trigonometric interpolation. This paper also presents numerical results on Lasso trigonometric interpolation on $[-\pi,\pi]$, with or without the presence of data errors.
Recently established, directed dependence measures for pairs $(X,Y)$ of random variables build upon the natural idea of comparing the conditional distributions of $Y$ given $X=x$ with the marginal distribution of $Y$. They assign pairs $(X,Y)$ values in $[0,1]$, the value is $0$ if and only if $X,Y$ are independent, and it is $1$ exclusively for $Y$ being a function of $X$. Here we show that comparing randomly drawn conditional distributions with each other instead or, equivalently, analyzing how sensitive the conditional distribution of $Y$ given $X=x$ is on $x$, opens the door to constructing novel families of dependence measures $\Lambda_\varphi$ induced by general convex functions $\varphi: \mathbb{R} \rightarrow \mathbb{R}$, containing, e.g., Chatterjee's coefficient of correlation as special case. After establishing additional useful properties of $\Lambda_\varphi$ we focus on continuous $(X,Y)$, translate $\Lambda_\varphi$ to the copula setting, consider the $L^p$-version and establish an estimator which is strongly consistent in full generality. A real data example and a simulation study illustrate the chosen approach and the performance of the estimator. Complementing the afore-mentioned results, we show how a slight modification of the construction underlying $\Lambda_\varphi$ can be used to define new measures of explainability generalizing the fraction of explained variance.
In a recent paper, Tang and Ding introduced a class of binary cyclic codes of rate close to one half with a designed lower bound on their minimum distance. The definition involves the base $2$ expansion of the integers in their defining set. In this paper we propose an analogue for quaternary codes. In addition, the performances of the subfield subcode and of the trace code (two binary cyclic codes) are investigated.
A set of vertices of a graph $G$ is said to be decycling if its removal leaves an acyclic subgraph. The size of a smallest decycling set is the decycling number of $G$. Generally, at least $\lceil(n+2)/4\rceil$ vertices have to be removed in order to decycle a cubic graph on $n$ vertices. In 1979, Payan and Sakarovitch proved that the decycling number of a cyclically $4$-edge-connected cubic graph of order $n$ equals $\lceil (n+2)/4\rceil$. In addition, they characterised the structure of minimum decycling sets and their complements. If $n\equiv 2\pmod4$, then $G$ has a decycling set which is independent and its complement induces a tree. If $n\equiv 0\pmod4$, then one of two possibilities occurs: either $G$ has an independent decycling set whose complement induces a forest of two trees, or the decycling set is near-independent (which means that it induces a single edge) and its complement induces a tree. In this paper we strengthen the result of Payan and Sakarovitch by proving that the latter possibility (a near-independent set and a tree) can always be guaranteed. Moreover, we relax the assumption of cyclic $4$-edge-connectivity to a significantly weaker condition expressed through the canonical decomposition of 3-connected cubic graphs into cyclically $4$-edge-connected ones. Our methods substantially use a surprising and seemingly distant relationship between the decycling number and the maximum genus of a cubic graph.
We prove that for any graph $G$ of maximum degree at most $\Delta$, the zeros of its chromatic polynomial $\chi_G(x)$ (in $\mathbb{C}$) lie inside the disc of radius $5.94 \Delta$ centered at $0$. This improves on the previously best known bound of approximately $6.91\Delta$. We also obtain improved bounds for graphs of high girth. We prove that for every $g$ there is a constant $K_g$ such that for any graph $G$ of maximum degree at most $\Delta$ and girth at least $g$, the zeros of its chromatic polynomial $\chi_G(x)$ lie inside the disc of radius $K_g \Delta$ centered at $0$, where $K_g$ is the solution to a certain optimization problem. In particular, $K_g < 5$ when $g \geq 5$ and $K_g < 4$ when $g \geq 25$ and $K_g$ tends to approximately $3.86$ as $g \to \infty$. Key to the proof is a classical theorem of Whitney which allows us to relate the chromatic polynomial of a graph $G$ to the generating function of so-called broken-circuit-free forests in $G$. We also establish a zero-free disc for the generating function of all forests in $G$ (aka the partition function of the arboreal gas) which may be of independent interest.
Let $X$ be a $p$-variate random vector and $\widetilde{X}$ a knockoff copy of $X$ (in the sense of \cite{CFJL18}). A new approach for constructing $\widetilde{X}$ (henceforth, NA) has been introduced in \cite{JSPI}. NA has essentially three advantages: (i) To build $\widetilde{X}$ is straightforward; (ii) The joint distribution of $(X,\widetilde{X})$ can be written in closed form; (iii) $\widetilde{X}$ is often optimal under various criteria. However, for NA to apply, $X_1,\ldots, X_p$ should be conditionally independent given some random element $Z$. Our first result is that any probability measure $\mu$ on $\mathbb{R}^p$ can be approximated by a probability measure $\mu_0$ of the form $$\mu_0\bigl(A_1\times\ldots\times A_p\bigr)=E\Bigl\{\prod_{i=1}^p P(X_i\in A_i\mid Z)\Bigr\}.$$ The approximation is in total variation distance when $\mu$ is absolutely continuous, and an explicit formula for $\mu_0$ is provided. If $X\sim\mu_0$, then $X_1,\ldots,X_p$ are conditionally independent. Hence, with a negligible error, one can assume $X\sim\mu_0$ and build $\widetilde{X}$ through NA. Our second result is a characterization of the knockoffs $\widetilde{X}$ obtained via NA. It is shown that $\widetilde{X}$ is of this type if and only if the pair $(X,\widetilde{X})$ can be extended to an infinite sequence so as to satisfy certain invariance conditions. The basic tool for proving this fact is de Finetti's theorem for partially exchangeable sequences. In addition to the quoted results, an explicit formula for the conditional distribution of $\widetilde{X}$ given $X$ is obtained in a few cases. In one of such cases, it is assumed $X_i\in\{0,1\}$ for all $i$.
Three-dimensional facial stereophotogrammetry provides a detailed representation of craniofacial soft tissue without the use of ionizing radiation. While manual annotation of landmarks serves as the current gold standard for cephalometric analysis, it is a time-consuming process and is prone to human error. The aim in this study was to develop and evaluate an automated cephalometric annotation method using a deep learning-based approach. Ten landmarks were manually annotated on 2897 3D facial photographs by a single observer. The automated landmarking workflow involved two successive DiffusionNet models and additional algorithms for facial segmentation. The dataset was randomly divided into a training and test dataset. The training dataset was used to train the deep learning networks, whereas the test dataset was used to evaluate the performance of the automated workflow. The precision of the workflow was evaluated by calculating the Euclidean distances between the automated and manual landmarks and compared to the intra-observer and inter-observer variability of manual annotation and the semi-automated landmarking method. The workflow was successful in 98.6% of all test cases. The deep learning-based landmarking method achieved precise and consistent landmark annotation. The mean precision of 1.69 (+/-1.15) mm was comparable to the inter-observer variability (1.31 +/-0.91 mm) of manual annotation. The Euclidean distance between the automated and manual landmarks was within 2 mm in 69%. Automated landmark annotation on 3D photographs was achieved with the DiffusionNet-based approach. The proposed method allows quantitative analysis of large datasets and may be used in diagnosis, follow-up, and virtual surgical planning.
For a functor $Q$ from a category $C$ to the category $Pos$ of ordered sets and order-preserving functions, we study liftings of various kind of structures from the base category $C$ to the total(or Grothendieck) category $\int Q$. That lifting a monoidal structure corresponds to giving some lax natural transformation making $Q$ almost monoidal, might be part of folklore in category theory.We rely on and generalize the tools supporting this correspondence so to provide exact conditions for lifting symmetric monoidal closed and star-autonomous structures.A corollary of these characterizations is that, if $Q$ factors as a monoidal functor through $SLatt$, the category of complete lattices and sup-preserving functions, then $\int Q$ is always symmetric monoidalclosed. In this case, we also provide a method, based on the double negation nucleus from quantale theory, to turn $\int Q$ into a star-autonomous category.The theory developed, originally motivated from the categories $P-Set$ of Schalk and de Paiva, yields a wide generalization of Hyland and Schalk construction of star-autonomous categories by means of orthogonality structures.
We study the behavior of a label propagation algorithm (LPA) on the Erd\H{o}s-R\'enyi random graph $\mathcal{G}(n,p)$. Initially, given a network, each vertex starts with a random label in the interval $[0,1]$. Then, in each round of LPA, every vertex switches its label to the majority label in its neighborhood (including its own label). At the first round, ties are broken towards smaller labels, while at each of the next rounds, ties are broken uniformly at random. The algorithm terminates once all labels stay the same in two consecutive iterations. LPA is successfully used in practice for detecting communities in networks (corresponding to vertex sets with the same label after termination of the algorithm). Perhaps surprisingly, LPA's performance on dense random graphs is hard to analyze, and so far convergence to consenus was known only when $np\ge n^{3/4+\varepsilon}$. By a very careful multi-stage exposure of the edges, we break this barrier and show that, when $np \ge n^{5/8+\varepsilon}$, a.a.s. the algorithm terminates with a single label. Moreover, we show that, if $np\gg n^{2/3}$, a.a.s. this label is the smallest one, whereas if $n^{5/8+\varepsilon}\le np\ll n^{2/3}$, the surviving label is a.a.s. not the smallest one.
We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.