亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

For a functor $Q$ from a category $C$ to the category $Pos$ of ordered sets and order-preserving functions, we study liftings of various kind of structures from the base category $C$ to the total(or Grothendieck) category $\int Q$. That lifting a monoidal structure corresponds to giving some lax natural transformation making $Q$ almost monoidal, might be part of folklore in category theory.We rely on and generalize the tools supporting this correspondence so to provide exact conditions for lifting symmetric monoidal closed and star-autonomous structures.A corollary of these characterizations is that, if $Q$ factors as a monoidal functor through $SLatt$, the category of complete lattices and sup-preserving functions, then $\int Q$ is always symmetric monoidalclosed. In this case, we also provide a method, based on the double negation nucleus from quantale theory, to turn $\int Q$ into a star-autonomous category.The theory developed, originally motivated from the categories $P-Set$ of Schalk and de Paiva, yields a wide generalization of Hyland and Schalk construction of star-autonomous categories by means of orthogonality structures.

相關內容

In this work, we present new proofs of convergence for Plug-and-Play (PnP) algorithms. PnP methods are efficient iterative algorithms for solving image inverse problems where regularization is performed by plugging a pre-trained denoiser in a proximal algorithm, such as Proximal Gradient Descent (PGD) or Douglas-Rachford Splitting (DRS). Recent research has explored convergence by incorporating a denoiser that writes exactly as a proximal operator. However, the corresponding PnP algorithm has then to be run with stepsize equal to $1$. The stepsize condition for nonconvex convergence of the proximal algorithm in use then translates to restrictive conditions on the regularization parameter of the inverse problem. This can severely degrade the restoration capacity of the algorithm. In this paper, we present two remedies for this limitation. First, we provide a novel convergence proof for PnP-DRS that does not impose any restrictions on the regularization parameter. Second, we examine a relaxed version of the PGD algorithm that converges across a broader range of regularization parameters. Our experimental study, conducted on deblurring and super-resolution experiments, demonstrate that both of these solutions enhance the accuracy of image restoration.

I propose Ziv-Zakai-type lower bounds on the Bayesian error for estimating a parameter $\beta:\Theta \to \mathbb R$ when the parameter space $\Theta$ is general and $\beta(\theta)$ need not be a linear function of $\theta$.

In this article, we study the parameterized complexity of the Set Cover problem restricted to d-semi-ladder-free hypergraphs, a class defined by Fabianski et al. [Proceedings of STACS 2019]. We observe that two algorithms introduced by Langerman and Morin [Discrete \& Computational Geometry 2005] in the context of geometric covering problems can be adapted to this setting, yielding simple FPT and kernelization algorithms for Set Cover in d-semi-ladder-free hypergraphs. We complement our algorithmic results with a compression lower bound for the problem, that proves the tightness of our kernelization under standard complexity-theoretic assumptions.

We explore a notion of bent sequence attached to the data consisting of an Hadamard matrix of order $n$ defined over the complex $q^{th}$ roots of unity, an eigenvalue of that matrix, and a Galois automorphism from the cyclotomic field of order $q.$ In particular we construct self-dual bent sequences for various $q\le 60$ and lengths $n\le 21.$ Computational construction methods comprise the resolution of polynomial systems by Groebner bases and eigenspace computations. Infinite families can be constructed from regular Hadamard matrices, Bush-type Hadamard matrices, and generalized Boolean bent functions.As an application, we estimate the covering radius of the code attached to that matrix over $\Z_q.$ We derive a lower bound on that quantity for the Chinese Euclidean metric when bent sequences exist. We give the Euclidean distance spectrum, and bound above the covering radius of an attached spherical code, depending on its strength as a spherical design.

The polynomial identity lemma (also called the "Schwartz-Zippel lemma") states that any nonzero polynomial $f(x_1,\ldots, x_n)$ of degree at most $s$ will evaluate to a nonzero value at some point on a grid $S^n \subseteq \mathbb{F}^n$ with $|S| > s$. Thus, there is an explicit hitting set for all $n$-variate degree $s$, size $s$ algebraic circuits of size $(s+1)^n$. In this paper, we prove the following results: - Let $\varepsilon > 0$ be a constant. For a sufficiently large constant $n$ and all $s > n$, if we have an explicit hitting set of size $(s+1)^{n-\varepsilon}$ for the class of $n$-variate degree $s$ polynomials that are computable by algebraic circuits of size $s$, then for all $s$, we have an explicit hitting set of size $s^{\exp \circ \exp (O(\log^\ast s))}$ for $s$-variate circuits of degree $s$ and size $s$. That is, if we can obtain a barely non-trivial exponent compared to the trivial $(s+1)^{n}$ sized hitting set even for constant variate circuits, we can get an almost complete derandomization of PIT. - The above result holds when "circuits" are replaced by "formulas" or "algebraic branching programs". This extends a recent surprising result of Agrawal, Ghosh and Saxena (STOC 2018,PNAS 2019) who proved the same conclusion for the class of algebraic circuits, if the hypothesis provided a hitting set of size at most $(s^{n^{0.5 - \delta}})$ (where $\delta>0$ is any constant). Hence, our work significantly weakens the hypothesis of Agrawal, Ghosh and Saxena to only require a slightly non-trivial saving over the trivial hitting set, and also presents the first such result for algebraic branching programs and formulas.

We bound the smoothed running time of the FLIP algorithm for local Max-Cut as a function of $\alpha$, the arboricity of the input graph. We show that, with high probability, the following holds (where $n$ is the number of nodes and $\phi$ is the smoothing parameter): 1) When $\alpha = O(\sqrt{\log n})$ FLIP terminates in $\phi poly(n)$ iterations. Previous to our results the only graph families for which FLIP was known to achieve a smoothed polynomial running time were complete graphs and graphs with logarithmic maximum degree. 2) For arbitrary values of $\alpha$ we get a running time of $\phi n^{O(\frac{\alpha}{\log n} + \log \alpha)}$. This improves over the best known running time for general graphs of $\phi n^{O(\sqrt{ \log n })}$ for $\alpha = o(\log^{1.5} n)$. Specifically, when $\alpha = O(\log n)$ we get a significantly faster running time of $\phi n^{O(\log \log n)}$.

We derive the first explicit bounds for the spectral gap of a random walk Metropolis algorithm on $R^d$ for any value of the proposal variance, which when scaled appropriately recovers the correct $d^{-1}$ dependence on dimension for suitably regular invariant distributions. We also obtain explicit bounds on the ${\rm L}^2$-mixing time for a broad class of models. In obtaining these results, we refine the use of isoperimetric profile inequalities to obtain conductance profile bounds, which also enable the derivation of explicit bounds in a much broader class of models. We also obtain similar results for the preconditioned Crank--Nicolson Markov chain, obtaining dimension-independent bounds under suitable assumptions.

A class of graphs admits an adjacency labeling scheme of size $f(n)$, if the vertices of any $n$-vertex graph $G$ in the class can be assigned binary strings (aka labels) of length $f(n)$ so that the adjacency between each pair of vertices in $G$ can be determined only from their labels. The Implicit Graph Conjecture (IGC) claimed that any graph class which is hereditary (i.e. closed under taking induced subgraphs) and factorial (i.e. containing $2^{\Theta(n \log n)}$ graphs on $n$ vertices) admits an adjacency labeling scheme of order optimal size $O(\log n)$. After thirty years open, the IGC was recently disproved [Hatami and Hatami, FOCS 2022]. In this work we show that the IGC does not hold even for monotone graph classes, i.e. classes closed under taking subgraphs. More specifically, we show that there are monotone factorial graph classes for which the size of any adjacency labeling scheme is $\Omega(\log^2 n)$. Moreover, this is best possible, as any monotone factorial class admits an adjacency labeling scheme of size $O(\log^2 n)$. This is a consequence of our general result that establishes tight bounds on the size of adjacency labeling schemes for monotone graph classes: for any function $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ with $\log x \leq f(x) \leq x^{1-\delta}$ for some constant $\delta > 0$, that satisfies some natural conditions, there exist monotone graph classes, in which the number of $n$-vertex graphs grows as $2^{O(nf(n))}$ and that do not admit adjacency labels of size at most $f(n) \log n$. On the other hand any such class admits adjacency labels of size $O(f(n)\log n)$, which is a factor of $\log n$ away from the order optimal bound $O(f(n))$. This is the first example of tight bounds on adjacency labels for graph classes that do not admit order optimal adjacency labeling schemes.

We study the problem of enumerating results from a query over a compressed document. The model we use for compression are straight-line programs (SLPs), which are defined by a context-free grammar that produces a single string. For our queries, we use a model called Annotated Automata, an extension of regular automata that allows annotations on letters. This model extends the notion of Regular Spanners as it allows arbitrarily long outputs. Our main result is an algorithm that evaluates such a query by enumerating all results with output-linear delay after a preprocessing phase which takes linear time on the size of the SLP, and cubic time over the size of the automaton. This is an improvement over Schmid and Schweikardt's result, which, with the same preprocessing time, enumerates with a delay that is logarithmic on the size of the uncompressed document. We achieve this through a persistent data structure named Enumerable Compact Sets with Shifts which guarantees output-linear delay under certain restrictions. These results imply constant-delay enumeration algorithms in the context of regular spanners. Further, we use an extension of annotated automata which utilizes succinctly encoded annotations to save an exponential factor from previous results that dealt with constant-delay enumeration over vset automata. Lastly, we extend our results in the same fashion Schmid and Schweikardt did to allow complex document editing while maintaining the constant delay guarantee.

We construct a graph with $n$ vertices where the smoothed runtime of the 3-FLIP algorithm for the 3-Opt Local Max-Cut problem can be as large as $2^{\Omega(\sqrt{n})}$. This provides the first example where a local search algorithm for the Max-Cut problem can fail to be efficient in the framework of smoothed analysis. We also give a new construction of graphs where the runtime of the FLIP algorithm for the Local Max-Cut problem is $2^{\Omega(n)}$ for any pivot rule. This graph is much smaller and has a simpler structure than previous constructions.

北京阿比特科技有限公司