亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The polynomial identity lemma (also called the "Schwartz-Zippel lemma") states that any nonzero polynomial $f(x_1,\ldots, x_n)$ of degree at most $s$ will evaluate to a nonzero value at some point on a grid $S^n \subseteq \mathbb{F}^n$ with $|S| > s$. Thus, there is an explicit hitting set for all $n$-variate degree $s$, size $s$ algebraic circuits of size $(s+1)^n$. In this paper, we prove the following results: - Let $\varepsilon > 0$ be a constant. For a sufficiently large constant $n$ and all $s > n$, if we have an explicit hitting set of size $(s+1)^{n-\varepsilon}$ for the class of $n$-variate degree $s$ polynomials that are computable by algebraic circuits of size $s$, then for all $s$, we have an explicit hitting set of size $s^{\exp \circ \exp (O(\log^\ast s))}$ for $s$-variate circuits of degree $s$ and size $s$. That is, if we can obtain a barely non-trivial exponent compared to the trivial $(s+1)^{n}$ sized hitting set even for constant variate circuits, we can get an almost complete derandomization of PIT. - The above result holds when "circuits" are replaced by "formulas" or "algebraic branching programs". This extends a recent surprising result of Agrawal, Ghosh and Saxena (STOC 2018,PNAS 2019) who proved the same conclusion for the class of algebraic circuits, if the hypothesis provided a hitting set of size at most $(s^{n^{0.5 - \delta}})$ (where $\delta>0$ is any constant). Hence, our work significantly weakens the hypothesis of Agrawal, Ghosh and Saxena to only require a slightly non-trivial saving over the trivial hitting set, and also presents the first such result for algebraic branching programs and formulas.

相關內容

簡稱 哈工大,創建于1920年,是C9聯盟成員之一,國內工科頂尖高校。1999年成為首批九所985工程院校之一,校訓是“規格嚴格,功夫到家”。

We study a class of functional problems reducible to computing $f^{(n)}(x)$ for inputs $n$ and $x$, where $f$ is a polynomial-time bijection. As we prove, the definition is robust against variations in the type of reduction used in its definition, and in whether we require $f$ to have a polynomial-time inverse or to be computible by a reversible logic circuit. These problems are characterized by the complexity class $\mathsf{FP}^{\mathsf{PSPACE}}$, and include natural $\mathsf{FP}^{\mathsf{PSPACE}}$-complete problems in circuit complexity, cellular automata, graph algorithms, and the dynamical systems described by piecewise-linear transformations.

We present a randomized algorithm that computes single-source shortest paths (SSSP) in $O(m\log^8(n)\log W)$ time when edge weights are integral and can be negative. This essentially resolves the classic negative-weight SSSP problem. The previous bounds are $\tilde O((m+n^{1.5})\log W)$ [BLNPSSSW FOCS'20] and $m^{4/3+o(1)}\log W$ [AMV FOCS'20]. Near-linear time algorithms were known previously only for the special case of planar directed graphs [Fakcharoenphol and Rao FOCS'01]. In contrast to all recent developments that rely on sophisticated continuous optimization methods and dynamic algorithms, our algorithm is simple: it requires only a simple graph decomposition and elementary combinatorial tools. In fact, ours is the first combinatorial algorithm for negative-weight SSSP to break through the classic $\tilde O(m\sqrt{n}\log W)$ bound from over three decades ago [Gabow and Tarjan SICOMP'89].

In this paper, we considier the limiting distribution of the maximum interpoint Euclidean distance $M_n=\max _{1 \leq i<j \leq n}\left\|\boldsymbol{X}_i-\boldsymbol{X}_j\right\|$, where $\boldsymbol{X}_1, \boldsymbol{X}_2, \ldots, \boldsymbol{X}_n$ be a random sample coming from a $p$-dimensional population with dependent sub-gaussian components. When the dimension tends to infinity with the sample size, we proves that $M_n^2$ under a suitable normalization asymptotically obeys a Gumbel type distribution. The proofs mainly depend on the Stein-Chen Poisson approximation method and high dimensional Gaussian approximation.

Complexity classes such as $\#\mathbf{P}$, $\oplus\mathbf{P}$, $\mathbf{GapP}$, $\mathbf{OptP}$, $\mathbf{NPMV}$, or the class of fuzzy languages realised by polynomial-time fuzzy nondeterministic Turing machines, can all be described in terms of a class $\mathbf{NP}[S]$ for a suitable semiring $S$, defined via weighted Turing machines over $S$ similarly as $\mathbf{NP}$ is defined via the classical nondeterministic Turing machines. Other complexity classes of decision problems can be lifted to the quantitative world using the same recipe as well, and the resulting classes relate to the original ones in the same way as weighted automata or logics relate to their unweighted counterparts. The article surveys these too-little-known connexions between weighted automata theory and computational complexity theory implicit in the existing literature, suggests a systematic approach to the study of weighted complexity classes, and presents several new observations strengthening the relation between both fields. In particular, it is proved that a natural extension of the Boolean satisfiability problem to weighted propositional logic is complete for the class $\mathbf{NP}[S]$ when $S$ is a finitely generated semiring. Moreover, a class of semiring-valued functions $\mathbf{FP}[S]$ is introduced for each semiring $S$ as a counterpart to the class $\mathbf{P}$, and the relations between $\mathbf{FP}[S]$ and $\mathbf{NP}[S]$ are considered.

We consider the problem of inferring latent stochastic differential equations (SDEs) with a time and memory cost that scales independently with the amount of data, the total length of the time series, and the stiffness of the approximate differential equations. This is in stark contrast to typical methods for inferring latent differential equations which, despite their constant memory cost, have a time complexity that is heavily dependent on the stiffness of the approximate differential equation. We achieve this computational advancement by removing the need to solve differential equations when approximating gradients using a novel amortization strategy coupled with a recently derived reparametrization of expectations under linear SDEs. We show that, in practice, this allows us to achieve similar performance to methods based on adjoint sensitivities with more than an order of magnitude fewer evaluations of the model in training.

We derive a concentration bound of the type `for all $n \geq n_0$ for some $n_0$' for TD(0) with linear function approximation. We work with online TD learning with samples from a single sample path of the underlying Markov chain. This makes our analysis significantly different from offline TD learning or TD learning with access to independent samples from the stationary distribution of the Markov chain. We treat TD(0) as a contractive stochastic approximation algorithm, with both martingale and Markov noises. Markov noise is handled using the Poisson equation and the lack of almost sure guarantees on boundedness of iterates is handled using the concept of relaxed concentration inequalities.

In this paper, we describe an algorithm for approximating functions of the form $f(x) = < \sigma(\mu), x^\mu >$ over $[0,1] \subset \mathbb{R}$, where $\sigma(\mu)$ is some distribution supported on $[a,b]$, with $0 <a < b < \infty$. One example from this class of functions is $x^c (\log{x})^m=(-1)^m < \delta^{(m)}(\mu-c), x^\mu >$, where $a\leq c \leq b$ and $m \geq 0$ is an integer. Given the desired accuracy $\epsilon$ and the values of $a$ and $b$, our method determines a priori a collection of non-integer powers $t_1$, $t_2$, $\ldots$, $t_N$, so that the functions are approximated by series of the form $f(x)\approx \sum_{j=1}^N c_j x^{t_j}$, and a set of collocation points $x_1$, $x_2$, $\ldots$, $x_N$, such that the expansion coefficients can be found by collocating the function at these points. We prove that our method has a small uniform approximation error which is proportional to $\epsilon$ multiplied by some small constants. We demonstrate the performance of our algorithm with several numerical experiments, and show that the number of singular powers and collocation points grows as $N=O(\log{\frac{1}{\epsilon}})$.

For a permutation $\pi: [K]\rightarrow [K]$, a sequence $f: \{1,2,\cdots, n\}\rightarrow \mathbb R$ contains a $\pi$-pattern of size $K$, if there is a sequence of indices $(i_1, i_2, \cdots, i_K)$ ($i_1<i_2<\cdots<i_K$), satisfying that $f(i_a)<f(i_b)$ if $\pi(a)<\pi(b)$, for $a,b\in [K]$. Otherwise, $f$ is referred to as $\pi$-free. For the special case where $\pi = (1,2,\cdots, K)$, it is referred to as the monotone pattern. \cite{newman2017testing} initiated the study of testing $\pi$-freeness with one-sided error. They focused on two specific problems, testing the monotone permutations and the $(1,3,2)$ permutation. For the problem of testing monotone permutation $(1,2,\cdots,K)$, \cite{ben2019finding} improved the $(\log n)^{O(K^2)}$ non-adaptive query complexity of \cite{newman2017testing} to $O((\log n)^{\lfloor \log_{2} K\rfloor})$. Further, \cite{ben2019optimal} proposed an adaptive algorithm with $O(\log n)$ query complexity. However, no progress has yet been made on the problem of testing $(1,3,2)$-freeness. In this work, we present an adaptive algorithm for testing $(1,3,2)$-freeness. The query complexity of our algorithm is $O(\epsilon^{-2}\log^4 n)$, which significantly improves over the $O(\epsilon^{-7}\log^{26}n)$-query adaptive algorithm of \cite{newman2017testing}. This improvement is mainly achieved by the proposal of a new structure embedded in the patterns.

For which unary predicates $P_1, \ldots, P_m$ is the MSO theory of the structure $\langle \mathbb{N}; <, P_1, \ldots, P_m \rangle$ decidable? We survey the state of the art, leading us to investigate combinatorial properties of almost-periodic, morphic, and toric words. In doing so, we show that if each $P_i$ can be generated by a toric dynamical system of a certain kind, then the attendant MSO theory is decidable.

Given a graph $G$, an integer $k\geq 0$, and a non-negative integral function $f:V(G) \rightarrow \mathcal{N}$, the {\sc Vector Domination} problem asks whether a set $S$ of vertices, of cardinality $k$ or less, exists in $G$ so that every vertex $v \in V(G)-S$ has at least $f(v)$ neighbors in $S$. The problem generalizes several domination problems and it has also been shown to generalize Bounded-Degree Vertex Deletion. In this paper, the parameterized version of Vector Domination is studied when the input graph is planar. A linear problem kernel is presented.

北京阿比特科技有限公司