We derive a concentration bound of the type `for all $n \geq n_0$ for some $n_0$' for TD(0) with linear function approximation. We work with online TD learning with samples from a single sample path of the underlying Markov chain. This makes our analysis significantly different from offline TD learning or TD learning with access to independent samples from the stationary distribution of the Markov chain. We treat TD(0) as a contractive stochastic approximation algorithm, with both martingale and Markov noises. Markov noise is handled using the Poisson equation and the lack of almost sure guarantees on boundedness of iterates is handled using the concept of relaxed concentration inequalities.
Let $X$ be a $d$-dimensional simplicial complex. A function $F\colon X(k)\to \{0,1\}^k$ is said to be a direct product function if there exists a function $f\colon X(1)\to \{0,1\}$ such that $F(\sigma) = (f(\sigma_1), \ldots, f(\sigma_k))$ for each $k$-face $\sigma$. In an effort to simplify components of the PCP theorem, Goldreich and Safra introduced the problem of direct product testing, which asks whether one can test if $F\colon X(k)\to \{0,1\}^k$ is correlated with a direct product function by querying $F$ on only $2$ inputs. Dinur and Kaufman conjectured that there exist bounded degree complexes with a direct product test in the small soundness regime. We resolve their conjecture by showing that for all $\delta>0$, there exists a family of high-dimensional expanders with degree $O_{\delta}(1)$ and a $2$-query direct product tester with soundness $\delta$. We use the characterization given by a subset of the authors and independently by Dikstein and Dinur, who showed that some form of non-Abelian coboundary expansion (which they called "Unique-Games coboundary expansion") is a necessary and sufficient condition for a complex to admit such direct product testers. Our main technical contribution is a general technique for showing coboundary expansion of complexes with coefficients in a non-Abelian group. This allows us to prove that the high dimensional expanders constructed by Chapman and Lubotzky satisfies the necessary conditions, thus admitting a 2-query direct product tester with small soundness.
Construction of a large class of Mutually Unbiased Bases (MUBs) for non-prime power composite dimensions ($d = k\times s$) is a long standing open problem, which leads to different construction methods for the class Approximate MUBs (AMUBs) by relaxing the criterion that the absolute value of the dot product between two vectors chosen from different bases should be $\leq \frac{\beta}{\sqrt{d}}$. In this chapter, we consider a more general class of AMUBs (ARMUBs, considering the real ones too), compared to our earlier work in [Cryptography and Communications, 14(3): 527--549, 2022]. We note that the quality of AMUBs (ARMUBs) constructed using RBD$(X,A)$ with $|X|= d$, critically depends on the parameters, $|s-k|$, $\mu$ (maximum number of elements common between any pair of blocks), and the set of block sizes. We present the construction of $\mathcal{O}(\sqrt{d})$ many $\beta$-AMUBs for composite $d$ when $|s-k|< \sqrt{d}$, using RBDs having block sizes approximately $\sqrt{d}$, such that $|\braket{\psi^l_i|\psi^m_j}| \leq \frac{\beta}{\sqrt{d}}$ where $\beta = 1 + \frac{|s-k|}{2\sqrt{d}}+ \mathcal{O}(d^{-1}) \leq 2$. Moreover, if real Hadamard matrix of order $k$ or $s$ exists, then one can construct at least $N(k)+1$ (or $N(s)+1$) many $\beta$-ARMUBs for dimension $d$, with $\beta \leq 2 - \frac{|s-k|}{2\sqrt{d}}+ \mathcal{O}(d^{-1})< 2$, where $N(w)$ is the number of MOLS$(w)$. This improves and generalizes some of our previous results for ARMUBs from two points, viz., the real cases are now extended to complex ones too. The earlier efforts use some existing RBDs, whereas here we consider new instances of RBDs that provide better results. Similar to the earlier cases, the AMUBs (ARMUBs) constructed using RBDs are in general very sparse, where the sparsity $(\epsilon)$ is $1 - \mathcal{O}(d^{-\frac{1}{2}})$.
Most mathematical distortions used in ML are fundamentally integral in nature: $f$-divergences, Bregman divergences, (regularized) optimal transport distances, integral probability metrics, geodesic distances, etc. In this paper, we unveil a grounded theory and tools which can help improve these distortions to better cope with ML requirements. We start with a generalization of Riemann integration that also encapsulates functions that are not strictly additive but are, more generally, $t$-additive, as in nonextensive statistical mechanics. Notably, this recovers Volterra's product integral as a special case. We then generalize the Fundamental Theorem of calculus using an extension of the (Euclidean) derivative. This, along with a series of more specific Theorems, serves as a basis for results showing how one can specifically design, alter, or change fundamental properties of distortion measures in a simple way, with a special emphasis on geometric- and ML-related properties that are the metricity, hyperbolicity, and encoding. We show how to apply it to a problem that has recently gained traction in ML: hyperbolic embeddings with a "cheap" and accurate encoding along the hyperbolic vs Euclidean scale. We unveil a new application for which the Poincar\'e disk model has very appealing features, and our theory comes in handy: \textit{model} embeddings for boosted combinations of decision trees, trained using the log-loss (trees) and logistic loss (combinations).
Recently, Ainsworth et al. showed that using weight matching (WM) to minimize the $L_2$ distance in a permutation search of model parameters effectively identifies permutations that satisfy linear mode connectivity (LMC), in which the loss along a linear path between two independently trained models with different seeds remains nearly constant. This paper provides a theoretical analysis of LMC using WM, which is crucial for understanding stochastic gradient descent's effectiveness and its application in areas like model merging. We first experimentally and theoretically show that permutations found by WM do not significantly reduce the $L_2$ distance between two models and the occurrence of LMC is not merely due to distance reduction by WM in itself. We then provide theoretical insights showing that permutations can change the directions of the singular vectors, but not the singular values, of the weight matrices in each layer. This finding shows that permutations found by WM mainly align the directions of singular vectors associated with large singular values across models. This alignment brings the singular vectors with large singular values, which determine the model functionality, closer between pre-merged and post-merged models, so that the post-merged model retains functionality similar to the pre-merged models, making it easy to satisfy LMC. Finally, we analyze the difference between WM and straight-through estimator (STE), a dataset-dependent permutation search method, and show that WM outperforms STE, especially when merging three or more models.
We consider a high-dimensional stochastic contextual linear bandit problem when the parameter vector is $s_{0}$-sparse and the decision maker is subject to privacy constraints under both central and local models of differential privacy. We present PrivateLASSO, a differentially private LASSO bandit algorithm. PrivateLASSO is based on two sub-routines: (i) a sparse hard-thresholding-based privacy mechanism and (ii) an episodic thresholding rule for identifying the support of the parameter $\theta$. We prove minimax private lower bounds and establish privacy and utility guarantees for PrivateLASSO for the central model under standard assumptions.
Attention computation takes both the time complexity of $O(n^2)$ and the space complexity of $O(n^2)$ simultaneously, which makes deploying Large Language Models (LLMs) in streaming applications that involve long contexts requiring substantial computational resources. In recent OpenAI DevDay (Nov 6, 2023), OpenAI released a new model that is able to support a 128K-long document, in our paper, we focus on the memory-efficient issue when context length $n$ is much greater than 128K ($n \gg 2^d$). Considering a single-layer self-attention with Query, Key, and Value matrices $Q, K, V \in \mathbb{R}^{n \times d}$, the polynomial method approximates the attention output $T \in \mathbb{R}^{n \times d}$. It accomplishes this by constructing $U_1, U_2 \in \mathbb{R}^{n \times t}$ to expedite attention ${\sf Attn}(Q, K, V)$ computation within $n^{1+o(1)}$ time executions. Despite this, computing the approximated attention matrix $U_1U_2^\top \in \mathbb{R}^{n \times n}$ still necessitates $O(n^2)$ space, leading to significant memory usage. In response to these challenges, we introduce a new algorithm that only reads one pass of the data in a streaming fashion. This method employs sublinear space $o(n)$ to store three sketch matrices, alleviating the need for exact $K, V$ storage. Notably, our algorithm exhibits exceptional memory-efficient performance with super-long tokens. As the token length $n$ increases, our error guarantee diminishes while the memory usage remains nearly constant. This unique attribute underscores the potential of our technique in efficiently handling LLMs in streaming applications.
Recent advances in diffusion models attempt to handle conditional generative tasks by utilizing a differentiable loss function for guidance without the need for additional training. While these methods achieved certain success, they often compromise on sample quality and require small guidance step sizes, leading to longer sampling processes. This paper reveals that the fundamental issue lies in the manifold deviation during the sampling process when loss guidance is employed. We theoretically show the existence of manifold deviation by establishing a certain lower bound for the estimation error of the loss guidance. To mitigate this problem, we propose Diffusion with Spherical Gaussian constraint (DSG), drawing inspiration from the concentration phenomenon in high-dimensional Gaussian distributions. DSG effectively constrains the guidance step within the intermediate data manifold through optimization and enables the use of larger guidance steps. Furthermore, we present a closed-form solution for DSG denoising with the Spherical Gaussian constraint. Notably, DSG can seamlessly integrate as a plugin module within existing training-free conditional diffusion methods. Implementing DSG merely involves a few lines of additional code with almost no extra computational overhead, yet it leads to significant performance improvements. Comprehensive experimental results in various conditional generation tasks validate the superiority and adaptability of DSG in terms of both sample quality and time efficiency.
The class XNLP consists of (parameterized) problems that can be solved nondeterministically in $f(k)n^{O(1)}$ time and $f(k)\log n$ space, where $n$ is the size of the input instance and $k$ the parameter. The class XALP consists of problems that can be solved in the above time and space with access to an additional stack. These two classes are a "natural home" for many standard graph problems and their generalizations. In this paper, we show the hardness of several problems on planar graphs, parameterized by outerplanarity, treewidth and pathwidth, thus strengthening several existing results. In particular, we show the XNLP-hardness of the following problems parameterized by outerplanarity: All-or-Nothing Flow, Target Outdegree Orientation, Capacitated (Red-Blue) Dominating Set, Target Set Selections etc. We also show the XNLP-completeness of Scattered Set parameterized by pathwidth and XALP-completeness parameterized by treewidth and outerplanarity.
A popular and flexible time series model for counts is the generalized integer autoregressive process of order $p$, GINAR($p$). These Markov processes are defined using thinning operators evaluated on past values of the process along with a discretely-valued innovation process. This class includes the commonly used INAR($p$) process, defined with binomial thinning and Poisson innovations. GINAR processes can be used in a variety of settings, including modeling time series with low counts, and allow for more general mean-variance relationships, capturing both over- or under-dispersion. While there are many thinning operators and innovation processes given in the literature, less focus has been spent on comparing statistical inference and forecasting procedures over different choices of GINAR process. We provide an extensive study of exact and approximate inference and forecasting methods that can be applied to a wide class of GINAR($p$) processes with general thinning and innovation parameters. We discuss the challenges of exact estimation when $p$ is larger. We summarize and extend asymptotic results for estimators of process parameters, and present simulations to compare small sample performance, highlighting how different methods compare. We illustrate this methodology by fitting GINAR processes to a disease surveillance series.
We consider a $\sf K$ user interference network with general connectivity, described by a matrix $\mat{N}$, and general message flows, described by a matrix $\mat{M}$. Previous studies have demonstrated that the standard interference scheme (IA) might not be optimal for networks with sparse connectivity. In this paper, we formalize a general IA coding scheme and an intuitive number-filling puzzle for given $\mat{M}$ and $\mat{N}$ in a way that the score of the solution to the puzzle determines the optimum sum degrees that can be achieved by the IA scheme. A solution to the puzzle is proposed for a general class of symmetric channels, and it is shown that this solution leads to significantly higher $\SDoF$ than the standard IA scheme.