In this paper, we describe an algorithm for approximating functions of the form $f(x) = < \sigma(\mu), x^\mu >$ over $[0,1] \subset \mathbb{R}$, where $\sigma(\mu)$ is some distribution supported on $[a,b]$, with $0 <a < b < \infty$. One example from this class of functions is $x^c (\log{x})^m=(-1)^m < \delta^{(m)}(\mu-c), x^\mu >$, where $a\leq c \leq b$ and $m \geq 0$ is an integer. Given the desired accuracy $\epsilon$ and the values of $a$ and $b$, our method determines a priori a collection of non-integer powers $t_1$, $t_2$, $\ldots$, $t_N$, so that the functions are approximated by series of the form $f(x)\approx \sum_{j=1}^N c_j x^{t_j}$, and a set of collocation points $x_1$, $x_2$, $\ldots$, $x_N$, such that the expansion coefficients can be found by collocating the function at these points. We prove that our method has a small uniform approximation error which is proportional to $\epsilon$ multiplied by some small constants. We demonstrate the performance of our algorithm with several numerical experiments, and show that the number of singular powers and collocation points grows as $N=O(\log{\frac{1}{\epsilon}})$.
Let $X$ be a $d$-dimensional simplicial complex. A function $F\colon X(k)\to \{0,1\}^k$ is said to be a direct product function if there exists a function $f\colon X(1)\to \{0,1\}$ such that $F(\sigma) = (f(\sigma_1), \ldots, f(\sigma_k))$ for each $k$-face $\sigma$. In an effort to simplify components of the PCP theorem, Goldreich and Safra introduced the problem of direct product testing, which asks whether one can test if $F\colon X(k)\to \{0,1\}^k$ is correlated with a direct product function by querying $F$ on only $2$ inputs. Dinur and Kaufman conjectured that there exist bounded degree complexes with a direct product test in the small soundness regime. We resolve their conjecture by showing that for all $\delta>0$, there exists a family of high-dimensional expanders with degree $O_{\delta}(1)$ and a $2$-query direct product tester with soundness $\delta$. We use the characterization given by a subset of the authors and independently by Dikstein and Dinur, who showed that some form of non-Abelian coboundary expansion (which they called "Unique-Games coboundary expansion") is a necessary and sufficient condition for a complex to admit such direct product testers. Our main technical contribution is a general technique for showing coboundary expansion of complexes with coefficients in a non-Abelian group. This allows us to prove that the high dimensional expanders constructed by Chapman and Lubotzky satisfies the necessary conditions, thus admitting a 2-query direct product tester with small soundness.
Construction of a large class of Mutually Unbiased Bases (MUBs) for non-prime power composite dimensions ($d = k\times s$) is a long standing open problem, which leads to different construction methods for the class Approximate MUBs (AMUBs) by relaxing the criterion that the absolute value of the dot product between two vectors chosen from different bases should be $\leq \frac{\beta}{\sqrt{d}}$. In this chapter, we consider a more general class of AMUBs (ARMUBs, considering the real ones too), compared to our earlier work in [Cryptography and Communications, 14(3): 527--549, 2022]. We note that the quality of AMUBs (ARMUBs) constructed using RBD$(X,A)$ with $|X|= d$, critically depends on the parameters, $|s-k|$, $\mu$ (maximum number of elements common between any pair of blocks), and the set of block sizes. We present the construction of $\mathcal{O}(\sqrt{d})$ many $\beta$-AMUBs for composite $d$ when $|s-k|< \sqrt{d}$, using RBDs having block sizes approximately $\sqrt{d}$, such that $|\braket{\psi^l_i|\psi^m_j}| \leq \frac{\beta}{\sqrt{d}}$ where $\beta = 1 + \frac{|s-k|}{2\sqrt{d}}+ \mathcal{O}(d^{-1}) \leq 2$. Moreover, if real Hadamard matrix of order $k$ or $s$ exists, then one can construct at least $N(k)+1$ (or $N(s)+1$) many $\beta$-ARMUBs for dimension $d$, with $\beta \leq 2 - \frac{|s-k|}{2\sqrt{d}}+ \mathcal{O}(d^{-1})< 2$, where $N(w)$ is the number of MOLS$(w)$. This improves and generalizes some of our previous results for ARMUBs from two points, viz., the real cases are now extended to complex ones too. The earlier efforts use some existing RBDs, whereas here we consider new instances of RBDs that provide better results. Similar to the earlier cases, the AMUBs (ARMUBs) constructed using RBDs are in general very sparse, where the sparsity $(\epsilon)$ is $1 - \mathcal{O}(d^{-\frac{1}{2}})$.
Most mathematical distortions used in ML are fundamentally integral in nature: $f$-divergences, Bregman divergences, (regularized) optimal transport distances, integral probability metrics, geodesic distances, etc. In this paper, we unveil a grounded theory and tools which can help improve these distortions to better cope with ML requirements. We start with a generalization of Riemann integration that also encapsulates functions that are not strictly additive but are, more generally, $t$-additive, as in nonextensive statistical mechanics. Notably, this recovers Volterra's product integral as a special case. We then generalize the Fundamental Theorem of calculus using an extension of the (Euclidean) derivative. This, along with a series of more specific Theorems, serves as a basis for results showing how one can specifically design, alter, or change fundamental properties of distortion measures in a simple way, with a special emphasis on geometric- and ML-related properties that are the metricity, hyperbolicity, and encoding. We show how to apply it to a problem that has recently gained traction in ML: hyperbolic embeddings with a "cheap" and accurate encoding along the hyperbolic vs Euclidean scale. We unveil a new application for which the Poincar\'e disk model has very appealing features, and our theory comes in handy: \textit{model} embeddings for boosted combinations of decision trees, trained using the log-loss (trees) and logistic loss (combinations).
In dimension $d$, Mutually Unbiased Bases (MUBs) are a collection of orthonormal bases over $\mathbb{C}^d$ such that for any two vectors $v_1, v_2$ belonging to different bases, the dot or scalar product $|\braket{v_1|v_2}| = \frac{1}{\sqrt{d}}$. The upper bound on the number of such bases is $d+1$. Construction methods to achieve this bound are known for cases when $d$ is some power of prime. The situation is more restrictive in other cases and also when we consider the results over real rather than complex. Thus, certain relaxations of this model are considered in literature and consequently Approximate MUBs (AMUB) are studied. This enables one to construct potentially large number of such objects for $\mathbb{C}^d$ as well as in $\mathbb{R}^d$. In this regard, we propose the concept of Almost Perfect MUBs (APMUB), where we restrict the absolute value of inner product $|\braket{v_1|v_2}|$ to be two-valued, one being 0 and the other $ \leq \frac{1+\mathcal{O}(d^{-\lambda})}{\sqrt{d}}$, such that $\lambda > 0$ and the numerator $1 + \mathcal{O}(d^{-\lambda}) \leq 2$. Each such vector constructed, has an important feature that large number of its components are zero and the non-zero components are of equal magnitude. Our techniques are based on combinatorial structures related to Resolvable Block Designs (RBDs). We show that for several composite dimensions $d$, one can construct $\mathcal{O}(\sqrt{d})$ many APMUBs, in which cases the number of MUBs are significantly small. To be specific, this result works for $d$ of the form $(q-e)(q+f), \ q, e, f \in \mathbb{N}$, with the conditions $0 \leq f \leq e$ for constant $e, f$ and $q$ some power of prime. We also show that such APMUBs provide sets of Bi-angular vectors which are of the order of $\mathcal{O}(d^{3/2})$ in numbers, having high angular distances among them.
Two graphs $G$ and $H$ are homomorphism indistinguishable over a class of graphs $\mathcal{F}$ if for all graphs $F \in \mathcal{F}$ the number of homomorphisms from $F$ to $G$ is equal to the number of homomorphisms from $F$ to $H$. Many natural equivalence relations comparing graphs such as (quantum) isomorphism, spectral, and logical equivalences can be characterised as homomorphism indistinguishability relations over certain graph classes. Abstracting from the wealth of such instances, we show in this paper that equivalences w.r.t. any self-complementarity logic admitting a characterisation as homomorphism indistinguishability relation can be characterised by homomorphism indistinguishability over a minor-closed graph class. Self-complementarity is a mild property satisfied by most well-studied logics. This result follows from a correspondence between closure properties of a graph class and preservation properties of its homomorphism indistinguishability relation. Furthermore, we classify all graph classes which are in a sense finite (essentially profinite) and satisfy the maximality condition of being homomorphism distinguishing closed, i.e. adding any graph to the class strictly refines its homomorphism indistinguishability relation. Thereby, we answer various questions raised by Roberson (2022) on general properties of the homomorphism distinguishing closure.
The class XNLP consists of (parameterized) problems that can be solved nondeterministically in $f(k)n^{O(1)}$ time and $f(k)\log n$ space, where $n$ is the size of the input instance and $k$ the parameter. The class XALP consists of problems that can be solved in the above time and space with access to an additional stack. These two classes are a "natural home" for many standard graph problems and their generalizations. In this paper, we show the hardness of several problems on planar graphs, parameterized by outerplanarity, treewidth and pathwidth, thus strengthening several existing results. In particular, we show the XNLP-hardness of the following problems parameterized by outerplanarity: All-or-Nothing Flow, Target Outdegree Orientation, Capacitated (Red-Blue) Dominating Set, Target Set Selections etc. We also show the XNLP-completeness of Scattered Set parameterized by pathwidth and XALP-completeness parameterized by treewidth and outerplanarity.
A subset $\mathcal{C}\subseteq\{0,1,2\}^n$ is said to be a $\textit{trifferent}$ code (of block length $n$) if for every three distinct codewords $x,y, z \in \mathcal{C}$, there is a coordinate $i\in \{1,2,\ldots,n\}$ where they all differ, that is, $\{x(i),y(i),z(i)\}$ is same as $\{0,1,2\}$. Let $T(n)$ denote the size of the largest trifferent code of block length $n$. Understanding the asymptotic behavior of $T(n)$ is closely related to determining the zero-error capacity of the $(3/2)$-channel defined by Elias'88, and is a long-standing open problem in the area. Elias had shown that $T(n)\leq 2\times (3/2)^n$ and prior to our work the best upper bound was $T(n)\leq 0.6937 \times (3/2)^n$ due to Kurz'23. We improve this bound to $T(n)\leq c \times n^{-2/5}\times (3/2)^n$ where $c$ is an absolute constant.
The circuit class $\mathsf{QAC}^0$ was introduced by Moore (1999) as a model for constant depth quantum circuits where the gate set includes many-qubit Toffoli gates. Proving lower bounds against such circuits is a longstanding challenge in quantum circuit complexity; in particular, showing that polynomial-size $\mathsf{QAC}^0$ cannot compute the parity function has remained an open question for over 20 years. In this work, we identify a notion of the Pauli spectrum of $\mathsf{QAC}^0$ circuits, which can be viewed as the quantum analogue of the Fourier spectrum of classical $\mathsf{AC}^0$ circuits. We conjecture that the Pauli spectrum of $\mathsf{QAC}^0$ circuits satisfies low-degree concentration, in analogy to the famous Linial, Nisan, Mansour theorem on the low-degree Fourier concentration of $\mathsf{AC}^0$ circuits. If true, this conjecture immediately implies that polynomial-size $\mathsf{QAC}^0$ circuits cannot compute parity. We prove this conjecture for the class of depth-$d$, polynomial-size $\mathsf{QAC}^0$ circuits with at most $n^{O(1/d)}$ auxiliary qubits. We obtain new circuit lower bounds and learning results as applications: this class of circuits cannot correctly compute - the $n$-bit parity function on more than $(\frac{1}{2} + 2^{-\Omega(n^{1/d})})$-fraction of inputs, and - the $n$-bit majority function on more than $(\frac{1}{2} + O(n^{-1/4}))$-fraction of inputs. Additionally we show that this class of $\mathsf{QAC}^0$ circuits with limited auxiliary qubits can be learned with quasipolynomial sample complexity, giving the first learning result for $\mathsf{QAC}^0$ circuits. More broadly, our results add evidence that "Pauli-analytic" techniques can be a powerful tool in studying quantum circuits.
Given a set $P$ of $n$ points and a set $S$ of $m$ disks in the plane, the disk coverage problem asks for a smallest subset of disks that together cover all points of $P$. The problem is NP-hard. In this paper, we consider a line-separable unit-disk version of the problem where all disks have the same radius and their centers are separated from the points of $P$ by a line $\ell$. We present an $O((n+m)\log(n+m))$ time algorithm for the problem. This improves the previously best result of $O(nm+ n\log n)$ time. Our techniques also solve the line-constrained version of the problem, where centers of all disks of $S$ are located on a line $\ell$ while points of $P$ can be anywhere in the plane. Our algorithm runs in $O((n+m)\log (m+ n)+m \log m\log n)$ time, which improves the previously best result of $O(nm\log(m+n))$ time. In addition, our results lead to an algorithm of $O(n^3\log n)$ time for a half-plane coverage problem (given $n$ half-planes and $n$ points, find a smallest subset of half-planes covering all points); this improves the previously best algorithm of $O(n^4\log n)$ time. Further, if all half-planes are lower ones, our algorithm runs in $O(n\log n)$ time while the previously best algorithm takes $O(n^2\log n)$ time.
In Linear Hashing ($\mathsf{LH}$) with $\beta$ bins on a size $u$ universe ${\mathcal{U}=\{0,1,\ldots, u-1\}}$, items $\{x_1,x_2,\ldots, x_n\}\subset \mathcal{U}$ are placed in bins by the hash function $$x_i\mapsto (ax_i+b)\mod p \mod \beta$$ for some prime $p\in [u,2u]$ and randomly chosen integers $a,b \in [1,p]$. The "maxload" of $\mathsf{LH}$ is the number of items assigned to the fullest bin. Expected maxload for a worst-case set of items is a natural measure of how well $\mathsf{LH}$ distributes items amongst the bins. Fix $\beta=n$. Despite $\mathsf{LH}$'s simplicity, bounding $\mathsf{LH}$'s worst-case maxload is extremely challenging. It is well-known that on random inputs $\mathsf{LH}$ achieves maxload $\Omega\left(\frac{\log n}{\log\log n}\right)$; this is currently the best lower bound for $\mathsf{LH}$'s expected maxload. Recently Knudsen established an upper bound of $\widetilde{O}(n^{1 / 3})$. The question "Is the worst-case expected maxload of $\mathsf{LH}$ $n^{o(1)}$?" is one of the most basic open problems in discrete math. In this paper we propose a set of intermediate open questions to help researchers make progress on this problem. We establish the relationship between these intermediate open questions and make some partial progress on them.