亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

I propose Ziv-Zakai-type lower bounds on the Bayesian error for estimating a parameter $\beta:\Theta \to \mathbb R$ when the parameter space $\Theta$ is general and $\beta(\theta)$ need not be a linear function of $\theta$.

相關內容

In a range of genomic applications, it is of interest to quantify the evidence that the signal at site~$i$ is active given conditionally independent replicate observations summarized by the sample mean and variance $(\bar Y, s^2)$ at each site. We study the version of the problem in which the signal distribution is sparse, and the error distribution has an unknown site-specific variance so that the null distribution of the standardized statistic is Student-$t$ rather than Gaussian. The main contribution of this paper is a sparse-mixture approximation to the non-null density of the $t$-ratio. This formula demonstrates the effect of low degrees of freedom on the Bayes factor, or the conditional probability that the site is active. We illustrate some differences on a HIV dataset for gene-expression data previously analyzed by Efron (2012).

We consider the inverse problem of reconstructing an unknown function $u$ from a finite set of measurements, under the assumption that $u$ is the trajectory of a transport-dominated problem with unknown input parameters. We propose an algorithm based on the Parameterized Background Data-Weak method (PBDW) where dynamical sensor placement is combined with approximation spaces that evolve in time. We prove that the method ensures an accurate reconstruction at all times and allows to incorporate relevant physical properties in the reconstructed solutions by suitably evolving the dynamical approximation space. As an application of this strategy we consider Hamiltonian systems modeling wave-type phenomena, where preservation of the geometric structure of the flow plays a crucial role in the accuracy and stability of the reconstructed trajectory.

We introduce a new technique called Drapes to enhance the sensitivity in searches for new physics at the LHC. By training diffusion models on side-band data, we show how background templates for the signal region can be generated either directly from noise, or by partially applying the diffusion process to existing data. In the partial diffusion case, data can be drawn from side-band regions, with the inverse diffusion performed for new target conditional values, or from the signal region, preserving the distribution over the conditional property that defines the signal region. We apply this technique to the hunt for resonances using the LHCO di-jet dataset, and achieve state-of-the-art performance for background template generation using high level input features. We also show how Drapes can be applied to low level inputs with jet constituents, reducing the model dependence on the choice of input observables. Using jet constituents we can further improve sensitivity to the signal process, but observe a loss in performance where the signal significance before applying any selection is below 4$\sigma$.

Reidl, S\'anchez Villaamil, and Stravopoulos (2019) characterized graph classes of bounded expansion as follows: A class $\mathcal{C}$ closed under subgraphs has bounded expansion if and only if there exists a function $f:\mathbb{N} \to \mathbb{N}$ such that for every graph $G \in \mathcal{C}$, every nonempty subset $A$ of vertices in $G$ and every nonnegative integer $r$, the number of distinct intersections between $A$ and a ball of radius $r$ in $G$ is at most $f(r) |A|$. When $\mathcal{C}$ has bounded expansion, the function $f(r)$ coming from existing proofs is typically exponential. In the special case of planar graphs, it was conjectured by Soko{\l}owski (2021) that $f(r)$ could be taken to be a polynomial. In this paper, we prove this conjecture: For every nonempty subset $A$ of vertices in a planar graph $G$ and every nonnegative integer $r$, the number of distinct intersections between $A$ and a ball of radius $r$ in $G$ is $O(r^4 |A|)$. We also show that a polynomial bound holds more generally for every proper minor-closed class of graphs.

In this article, a heuristic approach is used to determined the best approximate distribution of $\dfrac{Y_1}{Y_1 + Y_2}$, given that $Y_1,Y_2$ are independent, and each of $Y_1$ and $Y$ is distributed as the $\mathcal{F}$-distribution with common denominator degrees of freedom. The proposed approximate distribution is subject to graphical comparisons and distributional tests. The proposed distribution is used to derive the distribution of the elemental regression weight $\omega_E$, where $E$ is the elemental regression set.

The filtered Lie splitting scheme is an established method for the numerical integration of the periodic nonlinear Schr\"{o}dinger equation at low regularity. Its temporal convergence was recently analyzed in a framework of discrete Bourgain spaces in one and two space dimensions for initial data in $H^s$ with $0<s\leq 2$. Here, this analysis is extended to dimensions $d=3, 4, 5$ for data satisfying $d/2-1 < s \leq 2$. In this setting, convergence of order $s/2$ in $L^2$ is proven. Numerical examples illustrate these convergence results.

$\textbf{Background and aims}$: Artificial Intelligence (AI) Computer-Aided Detection (CADe) is commonly used for polyp detection, but data seen in clinical settings can differ from model training. Few studies evaluate how well CADe detectors perform on colonoscopies from countries not seen during training, and none are able to evaluate performance without collecting expensive and time-intensive labels. $\textbf{Methods}$: We trained a CADe polyp detector on Israeli colonoscopy videos (5004 videos, 1106 hours) and evaluated on Japanese videos (354 videos, 128 hours) by measuring the True Positive Rate (TPR) versus false alarms per minute (FAPM). We introduce a colonoscopy dissimilarity measure called "MAsked mediCal Embedding Distance" (MACE) to quantify differences between colonoscopies, without labels. We evaluated CADe on all Japan videos and on those with the highest MACE. $\textbf{Results}$: MACE correctly quantifies that narrow-band imaging (NBI) and chromoendoscopy (CE) frames are less similar to Israel data than Japan whitelight (bootstrapped z-test, |z| > 690, p < $10^{-8}$ for both). Despite differences in the data, CADe performance on Japan colonoscopies was non-inferior to Israel ones without additional training (TPR at 0.5 FAPM: 0.957 and 0.972 for Israel and Japan; TPR at 1.0 FAPM: 0.972 and 0.989 for Israel and Japan; superiority test t > 45.2, p < $10^{-8}$). Despite not being trained on NBI or CE, TPR on those subsets were non-inferior to Japan overall (non-inferiority test t > 47.3, p < $10^{-8}$, $\delta$ = 1.5% for both). $\textbf{Conclusion}$: Differences that prevent CADe detectors from performing well in non-medical settings do not degrade the performance of our AI CADe polyp detector when applied to data from a new country. MACE can help medical AI models internationalize by identifying the most "dissimilar" data on which to evaluate models.

For a graph $ G = (V, E) $ with a vertex set $ V $ and an edge set $ E $, a function $ f : V \rightarrow \{0, 1, 2, . . . , diam(G)\} $ is called a \emph{broadcast} on $ G $. For each vertex $ u \in V $, if there exists a vertex $ v $ in $ G $ (possibly, $ u = v $) such that $ f (v) > 0 $ and $ d(u, v) \leq f (v) $, then $ f $ is called a dominating broadcast on $ G $. The cost of the dominating broadcast $f$ is the quantity $ \sum_{v\in V}f(v) $. The minimum cost of a dominating broadcast is the broadcast domination number of $G$, denoted by $ \gamma_{b}(G) $. A multipacking is a set $ S \subseteq V $ in a graph $ G = (V, E) $ such that for every vertex $ v \in V $ and for every integer $ r \geq 1 $, the ball of radius $ r $ around $ v $ contains at most $ r $ vertices of $ S $, that is, there are at most $ r $ vertices in $ S $ at a distance at most $ r $ from $ v $ in $ G $. The multipacking number of $ G $ is the maximum cardinality of a multipacking of $ G $ and is denoted by $ mp(G) $. We show that, for any connected chordal graph $G$, $\gamma_{b}(G)\leq \big\lceil{\frac{3}{2} mp(G)\big\rceil}$. We also show that $\gamma_b(G)-mp(G)$ can be arbitrarily large for connected chordal graphs by constructing an infinite family of connected chordal graphs such that the ratio $\gamma_b(G)/mp(G)=10/9$, with $mp(G)$ arbitrarily large. Moreover, we show that $\gamma_{b}(G)\leq \big\lfloor{\frac{3}{2} mp(G)+2\delta\big\rfloor} $ holds for all $\delta$-hyperbolic graphs. In addition, we provide a polynomial-time algorithm to construct a multipacking of a $\delta$-hyperbolic graph $G$ of size at least $ \big\lceil{\frac{2mp(G)-4\delta}{3} \big\rceil} $.

In this paper, a new two-relaxation-time regularized (TRT-R) lattice Boltzmann (LB) model for convection-diffusion equation (CDE) with variable coefficients is proposed. Within this framework, we first derive a TRT-R collision operator by constructing a new regularized procedure through the high-order Hermite expansion of non-equilibrium. Then a first-order discrete-velocity form of discrete source term is introduced to improve the accuracy of the source term. Finally and most importantly, a new first-order space-derivative auxiliary term is proposed to recover the correct CDE with variable coefficients. To evaluate this model, we simulate a classic benchmark problem of the rotating Gaussian pulse. The results show that our model has better accuracy, stability and convergence than other popular LB models, especially in the case of a large time step.

In a recently developed variational discretization scheme for second order initial value problems ( J. Comput. Phys. 498, 112652 (2024) ), it was shown that the Noether charge associated with time translation symmetry is exactly preserved in the interior of the simulated domain. The obtained solution also fulfils the naively discretized equations of motions inside the domain, except for the last two grid points. Here we provide an explanation for the deviations at the boundary as stemming from the Lagrange multipliers used to implement initial and connection conditions. We show explicitly that the Noether charge including the boundary corrections is exactly preserved at its continuum value over the whole simulation domain, including the boundary points.

北京阿比特科技有限公司