亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

AI Large Language Models (LLMs) like ChatGPT are set to reshape some aspects of policymaking processes. Policy practitioners are already using ChatGPT for help with a variety of tasks: from drafting statements, submissions, and presentations, to conducting background research. We are cautiously hopeful that LLMs could be used to promote a marginally more balanced footing among decision makers in policy negotiations by assisting with certain tedious work, particularly benefiting developing countries who face capacity constraints that put them at a disadvantage in negotiations. However, the risks are particularly concerning for environmental and marine policy uses, due to the urgency of crises like climate change, high uncertainty, and trans-boundary impact. To explore the realistic potentials, limitations, and equity risks for LLMs in marine policymaking, we present a case study of an AI chatbot for the recently adopted Biodiversity Beyond National Jurisdiction Agreement (BBNJ), and critique its answers to key policy questions. Our case study demonstrates the dangers of LLMs in marine policymaking via their potential bias towards generating text that favors the perspectives of mainly Western economic centers of power, while neglecting developing countries' viewpoints. We describe several ways these biases can enter the system, including: (1) biases in the underlying foundational language models; (2) biases arising from the chatbot's connection to UN negotiation documents, and (3) biases arising from the application design. We urge caution in the use of generative AI in ocean policy processes and call for more research on its equity and fairness implications. Our work also underscores the need for developing countries' policymakers to develop the technical capacity to engage with AI on their own terms.

相關內容

The fairness of Natural Language Processing (NLP) models has emerged as a crucial concern. Information theory indicates that to achieve fairness, a model should not be able to predict sensitive variables, such as gender, ethnicity, and age. However, information related to these variables often appears implicitly in language, posing a challenge in identifying and mitigating biases effectively. To tackle this issue, we present a novel approach that operates at the embedding level of an NLP model, independent of the specific architecture. Our method leverages insights from recent advances in XAI techniques and employs an embedding transformation to eliminate implicit information from a selected variable. By directly manipulating the embeddings in the final layer, our approach enables a seamless integration into existing models without requiring significant modifications or retraining. In evaluation, we show that the proposed post-hoc approach significantly reduces gender-related associations in NLP models while preserving the overall performance and functionality of the models. An implementation of our method is available: //github.com/fanny-jourdan/TaCo

The use of Potential Based Reward Shaping (PBRS) has shown great promise in the ongoing research effort to tackle sample inefficiency in Reinforcement Learning (RL). However, the choice of the potential function is critical for this technique to be effective. Additionally, RL techniques are usually constrained to use a finite horizon for computational limitations. This introduces a bias when using PBRS, thus adding an additional layer of complexity. In this paper, we leverage abstractions to automatically produce a "good" potential function. We analyse the bias induced by finite horizons in the context of PBRS producing novel insights. Finally, to asses sample efficiency and performance impact, we evaluate our approach on four environments including a goal-oriented navigation task and three Arcade Learning Environments (ALE) games demonstrating that we can reach the same level of performance as CNN-based solutions with a simple fully-connected network.

The significant advancements in Large Language Models (LLMs) have resulted in their widespread adoption across various tasks within Software Engineering (SE), including vulnerability detection and repair. Numerous recent studies have investigated the application of LLMs to enhance vulnerability detection and repair tasks. Despite the increasing research interest, there is currently no existing survey that focuses on the utilization of LLMs for vulnerability detection and repair. In this paper, we aim to bridge this gap by offering a systematic literature review of approaches aimed at improving vulnerability detection and repair through the utilization of LLMs. The review encompasses research work from leading SE, AI, and Security conferences and journals, covering 36 papers published at 21 distinct venues. By answering three key research questions, we aim to (1) summarize the LLMs employed in the relevant literature, (2) categorize various LLM adaptation techniques in vulnerability detection, and (3) classify various LLM adaptation techniques in vulnerability repair. Based on our findings, we have identified a series of challenges that still need to be tackled considering existing studies. Additionally, we have outlined a roadmap highlighting potential opportunities that we believe are pertinent and crucial for future research endeavors.

Using Large Language Models (LLMs) for Process Mining (PM) tasks is becoming increasingly essential, and initial approaches yield promising results. However, little attention has been given to developing strategies for evaluating and benchmarking the utility of incorporating LLMs into PM tasks. This paper reviews the current implementations of LLMs in PM and reflects on three different questions. 1) What is the minimal set of capabilities required for PM on LLMs? 2) Which benchmark strategies help choose optimal LLMs for PM? 3) How do we evaluate the output of LLMs on specific PM tasks? The answer to these questions is fundamental to the development of comprehensive process mining benchmarks on LLMs covering different tasks and implementation paradigms.

The emergence of Large Language Models (LLMs) has achieved tremendous success in the field of Natural Language Processing owing to diverse training paradigms that empower LLMs to effectively capture intricate linguistic patterns and semantic representations. In particular, the recent "pre-train, prompt and predict" training paradigm has attracted significant attention as an approach for learning generalizable models with limited labeled data. In line with this advancement, these training paradigms have recently been adapted to the recommendation domain and are seen as a promising direction in both academia and industry. This half-day tutorial aims to provide a thorough understanding of extracting and transferring knowledge from pre-trained models learned through different training paradigms to improve recommender systems from various perspectives, such as generality, sparsity, effectiveness and trustworthiness. In this tutorial, we first introduce the basic concepts and a generic architecture of the language modeling paradigm for recommendation purposes. Then, we focus on recent advancements in adapting LLM-related training strategies and optimization objectives for different recommendation tasks. After that, we will systematically introduce ethical issues in LLM-based recommender systems and discuss possible approaches to assessing and mitigating them. We will also summarize the relevant datasets, evaluation metrics, and an empirical study on the recommendation performance of training paradigms. Finally, we will conclude the tutorial with a discussion of open challenges and future directions.

Large Language Models (LLMs) have achieved remarkable success, where instruction tuning is the critical step in aligning LLMs with user intentions. In this work, we investigate how the instruction tuning adjusts pre-trained models with a focus on intrinsic changes. Specifically, we first develop several local and global explanation methods, including a gradient-based method for input-output attribution, and techniques for interpreting patterns and concepts in self-attention and feed-forward layers. The impact of instruction tuning is then studied by comparing the explanations derived from the pre-trained and instruction-tuned models. This approach provides an internal perspective of the model shifts on a human-comprehensible level. Our findings reveal three significant impacts of instruction tuning: 1) It empowers LLMs to recognize the instruction parts of user prompts, and promotes the response generation constantly conditioned on the instructions. 2) It encourages the self-attention heads to capture more word-word relationships about instruction verbs. 3) It encourages the feed-forward networks to rotate their pre-trained knowledge toward user-oriented tasks. These insights contribute to a more comprehensive understanding of instruction tuning and lay the groundwork for future work that aims at explaining and optimizing LLMs for various applications. Our code and data are publicly available at //github.com/JacksonWuxs/Interpret_Instruction_Tuning_LLMs.

With the rapid advancements in Multimodal Large Language Models (MLLMs), securing these models against malicious inputs while aligning them with human values has emerged as a critical challenge. In this paper, we investigate an important and unexplored question of whether techniques that successfully jailbreak Large Language Models (LLMs) can be equally effective in jailbreaking MLLMs. To explore this issue, we introduce JailBreakV-28K, a pioneering benchmark designed to assess the transferability of LLM jailbreak techniques to MLLMs, thereby evaluating the robustness of MLLMs against diverse jailbreak attacks. Utilizing a dataset of 2, 000 malicious queries that is also proposed in this paper, we generate 20, 000 text-based jailbreak prompts using advanced jailbreak attacks on LLMs, alongside 8, 000 image-based jailbreak inputs from recent MLLMs jailbreak attacks, our comprehensive dataset includes 28, 000 test cases across a spectrum of adversarial scenarios. Our evaluation of 10 open-source MLLMs reveals a notably high Attack Success Rate (ASR) for attacks transferred from LLMs, highlighting a critical vulnerability in MLLMs that stems from their text-processing capabilities. Our findings underscore the urgent need for future research to address alignment vulnerabilities in MLLMs from both textual and visual inputs.

Close relationships are irreplaceable social resources, yet prone to high-risk conflict. Building on findings from the fields of HCI, virtual reality, and behavioral therapy, we evaluate the unexplored potential of retrospective VR-embodied perspective-taking to fundamentally influence conflict resolution in close others. We develop a biographically-accurate Retrospective Embodied Perspective-Taking system (REPT) and conduct a mixed-methods evaluation of its influence on close others' reflection and communication, compared to video-based reflection methods currently used in therapy (treatment as usual, or TAU). Our key findings provide evidence that REPT was able to significantly improve communication skills and positive sentiment of both partners during conflict, over TAU. The qualitative data also indicated that REPT surpassed basic perspective-taking by exclusively stimulating users to embody and reflect on both their own and their partner's experiences at the same level. In light of these findings, we provide implications and an agenda for social embodiment in HCI design: conceptualizing the use of `embodied social cognition,' and envisioning socially-embodied experiences as an interactive context.

Knowledge Graph Embedding (KGE) aims to learn representations for entities and relations. Most KGE models have gained great success, especially on extrapolation scenarios. Specifically, given an unseen triple (h, r, t), a trained model can still correctly predict t from (h, r, ?), or h from (?, r, t), such extrapolation ability is impressive. However, most existing KGE works focus on the design of delicate triple modeling function, which mainly tells us how to measure the plausibility of observed triples, but offers limited explanation of why the methods can extrapolate to unseen data, and what are the important factors to help KGE extrapolate. Therefore in this work, we attempt to study the KGE extrapolation of two problems: 1. How does KGE extrapolate to unseen data? 2. How to design the KGE model with better extrapolation ability? For the problem 1, we first discuss the impact factors for extrapolation and from relation, entity and triple level respectively, propose three Semantic Evidences (SEs), which can be observed from train set and provide important semantic information for extrapolation. Then we verify the effectiveness of SEs through extensive experiments on several typical KGE methods. For the problem 2, to make better use of the three levels of SE, we propose a novel GNN-based KGE model, called Semantic Evidence aware Graph Neural Network (SE-GNN). In SE-GNN, each level of SE is modeled explicitly by the corresponding neighbor pattern, and merged sufficiently by the multi-layer aggregation, which contributes to obtaining more extrapolative knowledge representation. Finally, through extensive experiments on FB15k-237 and WN18RR datasets, we show that SE-GNN achieves state-of-the-art performance on Knowledge Graph Completion task and performs a better extrapolation ability.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

北京阿比特科技有限公司