Close relationships are irreplaceable social resources, yet prone to high-risk conflict. Building on findings from the fields of HCI, virtual reality, and behavioral therapy, we evaluate the unexplored potential of retrospective VR-embodied perspective-taking to fundamentally influence conflict resolution in close others. We develop a biographically-accurate Retrospective Embodied Perspective-Taking system (REPT) and conduct a mixed-methods evaluation of its influence on close others' reflection and communication, compared to video-based reflection methods currently used in therapy (treatment as usual, or TAU). Our key findings provide evidence that REPT was able to significantly improve communication skills and positive sentiment of both partners during conflict, over TAU. The qualitative data also indicated that REPT surpassed basic perspective-taking by exclusively stimulating users to embody and reflect on both their own and their partner's experiences at the same level. In light of these findings, we provide implications and an agenda for social embodiment in HCI design: conceptualizing the use of `embodied social cognition,' and envisioning socially-embodied experiences as an interactive context.
Social norms play a crucial role in guiding agents towards understanding and adhering to standards of behavior, thus reducing social conflicts within multi-agent systems (MASs). However, current LLM-based (or generative) MASs lack the capability to be normative. In this paper, we propose a novel architecture, named CRSEC, to empower the emergence of social norms within generative MASs. Our architecture consists of four modules: Creation & Representation, Spreading, Evaluation, and Compliance. This addresses several important aspects of the emergent processes all in one: (i) where social norms come from, (ii) how they are formally represented, (iii) how they spread through agents' communications and observations, (iv) how they are examined with a sanity check and synthesized in the long term, and (v) how they are incorporated into agents' planning and actions. Our experiments deployed in the Smallville sandbox game environment demonstrate the capability of our architecture to establish social norms and reduce social conflicts within generative MASs. The positive outcomes of our human evaluation, conducted with 30 evaluators, further affirm the effectiveness of our approach. Our project can be accessed via the following link: //github.com/sxswz213/CRSEC.
The transformative potential of AI presents remarkable opportunities, but also significant risks, underscoring the importance of responsible AI development and deployment. Despite a growing emphasis on this area, there is limited understanding of industry's engagement in responsible AI research, i.e., the critical examination of AI's ethical, social, and legal dimensions. To address this gap, we analyzed over 6 million peer-reviewed articles and 32 million patent citations using multiple methods across five distinct datasets to quantify industry's engagement. Our findings reveal that the majority of AI firms show limited or no engagement in this critical subfield of AI. We show a stark disparity between industry's dominant presence in conventional AI research and its limited engagement in responsible AI. Leading AI firms exhibit significantly lower output in responsible AI research compared to their conventional AI research and the contributions of leading academic institutions. Our linguistic analysis documents a narrower scope of responsible AI research within industry, with a lack of diversity in key topics addressed. Our large-scale patent citation analysis uncovers a pronounced disconnect between responsible AI research and the commercialization of AI technologies, suggesting that industry patents rarely build upon insights generated by the responsible AI literature. This gap highlights the potential for AI development to diverge from a socially optimal path, risking unintended consequences due to insufficient consideration of ethical and societal implications. Our results highlight the urgent need for industry to publicly engage in responsible AI research to absorb academic knowledge, cultivate public trust, and proactively mitigate AI-induced societal harms.
Reliability has been a major concern in embedded systems. Higher transistor density and lower voltage supply increase the vulnerability of embedded systems to soft errors. A Single Event Upset (SEU), which is also called a soft error, can reverse a bit in a sequential element, resulting in a system failure. Simulation-based fault injection has been widely used to evaluate reliability, as suggested by ISO26262. However, it is practically impossible to test all faults for a complex design. Random fault injection is a compromise that reduces accuracy and fault coverage. Formal verification is an alternative approach. In this paper, we use formal verification, in the form of model checking, to evaluate the hardware reliability of a RISC-V Ibex Core in the presence of soft errors. Backward tracing is performed to identify and categorize faults according to their effects (no effect, Silent Data Corruption, crashes, and hangs). By using formal verification, the entire state space and fault list can be exhaustively explored. It is found that misaligned instructions can amplify fault effects. It is also found that some bits are more vulnerable to SEUs than others. In general, most of the bits in the Ibex Core are vulnerable to Silent Data Corruption, and the second pipeline stage is more vulnerable to Silent Data Corruption than the first.
Ensuring that AI systems reliably and robustly avoid harmful or dangerous behaviours is a crucial challenge, especially for AI systems with a high degree of autonomy and general intelligence, or systems used in safety-critical contexts. In this paper, we will introduce and define a family of approaches to AI safety, which we will refer to as guaranteed safe (GS) AI. The core feature of these approaches is that they aim to produce AI systems which are equipped with high-assurance quantitative safety guarantees. This is achieved by the interplay of three core components: a world model (which provides a mathematical description of how the AI system affects the outside world), a safety specification (which is a mathematical description of what effects are acceptable), and a verifier (which provides an auditable proof certificate that the AI satisfies the safety specification relative to the world model). We outline a number of approaches for creating each of these three core components, describe the main technical challenges, and suggest a number of potential solutions to them. We also argue for the necessity of this approach to AI safety, and for the inadequacy of the main alternative approaches.
Generative artificial intelligence (AI) is interacting with people at an unprecedented scale, offering new avenues for immense positive impact, but also raising widespread concerns around the potential for individual and societal harm. Today, the predominant paradigm for human-AI safety focuses on fine-tuning the generative model's outputs to better agree with human-provided examples or feedback. In reality, however, the consequences of an AI model's outputs cannot be determined in an isolated context: they are tightly entangled with the responses and behavior of human users over time. In this position paper, we argue that meaningful safety assurances for these AI technologies can only be achieved by reasoning about how the feedback loop formed by the AI's outputs and human behavior may drive the interaction towards different outcomes. To this end, we envision a high-value window of opportunity to bridge the rapidly growing capabilities of generative AI and the dynamical safety frameworks from control theory, laying a new foundation for human-centered AI safety in the coming decades.
Generative adversarial networks (GANs) have achieved remarkable progress in the natural image field. However, when applying GANs in the remote sensing (RS) image generation task, an extraordinary phenomenon is observed: the GAN model is more sensitive to the size of training data for RS image generation than for natural image generation. In other words, the generation quality of RS images will change significantly with the number of training categories or samples per category. In this paper, we first analyze this phenomenon from two kinds of toy experiments and conclude that the amount of feature information contained in the GAN model decreases with reduced training data. Then we establish a structural causal model (SCM) of the data generation process and interpret the generated data as the counterfactuals. Based on this SCM, we theoretically prove that the quality of generated images is positively correlated with the amount of feature information. This provides insights for enriching the feature information learned by the GAN model during training. Consequently, we propose two innovative adjustment schemes, namely Uniformity Regularization (UR) and Entropy Regularization (ER), to increase the information learned by the GAN model at the distributional and sample levels, respectively. We theoretically and empirically demonstrate the effectiveness and versatility of our methods. Extensive experiments on three RS datasets and two natural datasets show that our methods outperform the well-established models on RS image generation tasks. The source code is available at //github.com/rootSue/Causal-RSGAN.
There is a significant overlap between people who are supported by income-related social welfare benefits, often in precarious situations, and those who experience greater digital exclusion. We report on a study of claimants using the UK's Universal Credit online welfare benefit system designed as, and still, "digital by default". Through data collection involving remote interviews (n=11) and online surveys (n=66), we expose claimants' own lived experiences interacting with this system. The claimants explain how digital channels can contribute to an imbalance of power and agency, at a time when their own circumstances mean they have reduced abilities, resources and capacities, and where design choices can adversely affect people's utility to leverage help from their own wider socio-technical ecosystems. We contribute eight recommendations from these accounts to inform the future design and development of digital welfare benefit systems for this population, to reduce digital barriers and harms.
Stickers are increasingly used in social media to express sentiment and intent. When finding typing troublesome, people often use a sticker instead. Despite the significant impact of stickers on sentiment analysis and intent recognition, little research has been conducted. To address this gap, we propose a new task: Multimodal chat Sentiment Analysis and Intent Recognition involving Stickers (MSAIRS). Additionally, we introduce a novel multimodal dataset containing Chinese chat records and stickers excerpted from several mainstream social media platforms. Our dataset includes paired data with the same text but different stickers, and various stickers consisting of the same images with different texts, allowing us to better understand the impact of stickers on chat sentiment and intent. We also propose an effective multimodal joint model, MMSAIR, for our task, which is validated on our datasets and indicates that visual information of stickers counts. Our dataset and code will be publicly available.
Active participation in a conversation is key to building common ground, since understanding is jointly tailored by producers and recipients. Overhearers are deprived of the privilege of performing grounding acts and can only conjecture about intended meanings. Still, data generation and annotation, modelling, training and evaluation of NLP dialogue models place reliance on the overhearing paradigm. How much of the underlying grounding processes are thereby forfeited? As we show, there is evidence pointing to the impossibility of properly modelling human meta-communicative acts with data-driven learning models. In this paper, we discuss this issue and provide a preliminary analysis on the variability of human decisions for requesting clarification. Most importantly, we wish to bring this topic back to the community's table, encouraging discussion on the consequences of having models designed to only "listen in".
Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.