亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Spain is the third-largest producer of pork meat in the world, and many farms in several regions depend on the evolution of this market. However, the current pricing system is unfair, as some actors have better market information than others. In this context, historical pricing is an easy-to-find and affordable data source that can help all agents to be better informed. However, the time lag in data acquisition can affect their pricing decisions. In this paper, we study the effect that data acquisition delay has on a price prediction system using multiple prediction algorithms. We describe the integration of the best proposal into a decision support system prototype and test it in a real-case scenario. Specifically, we use public data from the most important regional pork meat markets in Spain published by the Ministry of Agriculture with a two-week delay and subscription-based data of the same markets obtained on the same day. The results show that the error difference between the best public and data subscription models is 0.6 Euro cents in favor of the data without delay. The market dimension makes these differences significant in the supply chain, giving pricing agents a better tool to negotiate market prices.

相關內容

Statistical techniques are needed to analyse data structures with complex dependencies such that clinically useful information can be extracted. Individual-specific networks, which capture dependencies in complex biological systems, are often summarized by graph-theoretical features. These features, which lend themselves to outcome modelling, can be subject to high variability due to arbitrary decisions in network inference and noise. Correlation-based adjacency matrices often need to be sparsified before meaningful graph-theoretical features can be extracted, requiring the data analysts to determine an optimal threshold.. To address this issue, we propose to incorporate a flexible weighting function over the full range of possible thresholds to capture the variability of graph-theoretical features over the threshold domain. The potential of this approach, which extends concepts from functional data analysis to a graph-theoretical setting, is explored in a plasmode simulation study using real functional magnetic resonance imaging (fMRI) data from the Autism Brain Imaging Data Exchange (ABIDE) Preprocessed initiative. The simulations show that our modelling approach yields accurate estimates of the functional form of the weight function, improves inference efficiency, and achieves a comparable or reduced root mean square prediction error compared to competitor modelling approaches. This assertion holds true in settings where both complex functional forms underlie the outcome-generating process and a universal threshold value is employed. We demonstrate the practical utility of our approach by using resting-state fMRI data to predict biological age in children. Our study establishes the flexible modelling approach as a statistically principled, serious competitor to ad-hoc methods with superior performance.

Introduction: Oblique Target-rotation in the context of exploratory factor analysis is a relevant method for the investigation of the oblique independent clusters model. It was argued that minimizing single cross-loadings by means of target rotation may lead to large effects of sampling error on the target rotated factor solutions. Method: In order to minimize effects of sampling error on results of Target-rotation we propose to compute the mean cross-loadings for each block of salient loadings of the independent clusters model and to perform target rotation for the block-wise mean cross-loadings. The resulting transformation-matrix is than applied to the complete unrotated loading matrix in order to produce mean Target-rotated factors. Results: A simulation study based on correlated independent factor models revealed that mean oblique Target-rotation resulted in smaller negative bias of factor inter-correlations than conventional Target-rotation based on single loadings, especially when sample size was small and when the number of factors was large. An empirical example revealed that the similarity of Target-rotated factors computed for small subsamples with Target-rotated factors of the total sample was more pronounced for mean Target-rotation than for conventional Target-rotation. Discussion: Mean Target-rotation can be recommended in the context of oblique independent factor models, especially for small samples. An R-script and an SPSS-script for this form of Target-rotation are provided in the Appendix.

By a semi-Lagrangian change of coordinates, the hydrostatic Euler equations describing free-surface sheared flows is rewritten as a system of quasilinear equations, where stability conditions can be determined by the analysis of its hyperbolic structure. This new system can be written as a quasi linear system in time and horizontal variables and involves no more vertical derivatives. However, the coefficients in front of the horizontal derivatives include an integral operator acting on the new vertical variable. The spectrum of these operators is studied in detail, in particular it includes a continuous part. Riemann invariants are then determined as conserved quantities along the characteristic curves. Examples of solutions are provided, in particular stationary solutions and solutions blowing-up in finite time. Eventually, we propose an exact multi-layer $\mathbb{P}_0$-discretization, which could be used to solve numerically this semi-Lagrangian system, and analyze the eigenvalues of the corresponding discretized operator to investigate the hyperbolic nature of the approximated system.

We consider a broad class of random bipartite networks, the distribution of which is invariant under permutation within each type of nodes. We are interested in $U$-statistics defined on the adjacency matrix of such a network, for which we define a new type of Hoeffding decomposition. This decomposition enables us to characterize non-degenerate $U$-statistics -- which are then asymptotically normal -- and provides us with a natural and easy-to-implement estimator of their asymptotic variance. \\ We illustrate the use of this general approach on some typical random graph models and use it to estimate or test some quantities characterizing the topology of the associated network. We also assess the accuracy and the power of the proposed estimates or tests, via a simulation study.

A major family of sufficient dimension reduction (SDR) methods, called inverse regression, commonly require the distribution of the predictor $X$ to have a linear $E(X|\beta^\mathsf{T}X)$ and a degenerate $\mathrm{var}(X|\beta^\mathsf{T}X)$ for the desired reduced predictor $\beta^\mathsf{T}X$. In this paper, we adjust the first and second-order inverse regression methods by modeling $E(X|\beta^\mathsf{T}X)$ and $\mathrm{var}(X|\beta^\mathsf{T}X)$ under the mixture model assumption on $X$, which allows these terms to convey more complex patterns and is most suitable when $X$ has a clustered sample distribution. The proposed SDR methods build a natural path between inverse regression and the localized SDR methods, and in particular inherit the advantages of both; that is, they are $\sqrt{n}$-consistent, efficiently implementable, directly adjustable under the high-dimensional settings, and fully recovering the desired reduced predictor. These findings are illustrated by simulation studies and a real data example at the end, which also suggest the effectiveness of the proposed methods for nonclustered data.

In epidemiology and social sciences, propensity score methods are popular for estimating treatment effects using observational data, and multiple imputation is popular for handling covariate missingness. However, how to appropriately use multiple imputation for propensity score analysis is not completely clear. This paper aims to bring clarity on the consistency (or lack thereof) of methods that have been proposed, focusing on the within approach (where the effect is estimated separately in each imputed dataset and then the multiple estimates are combined) and the across approach (where typically propensity scores are averaged across imputed datasets before being used for effect estimation). We show that the within method is valid and can be used with any causal effect estimator that is consistent in the full-data setting. Existing across methods are inconsistent, but a different across method that averages the inverse probability weights across imputed datasets is consistent for propensity score weighting. We also comment on methods that rely on imputing a function of the missing covariate rather than the covariate itself, including imputation of the propensity score and of the probability weight. Based on consistency results and practical flexibility, we recommend generally using the standard within method. Throughout, we provide intuition to make the results meaningful to the broad audience of applied researchers.

The class of doubly-robust (DR) functionals studied by Rotnitzky et al. (2021) is of central importance in economics and biostatistics. It strictly includes both (i) the class of mean-square continuous functionals that can be written as an expectation of an affine functional of a conditional expectation studied by Chernozhukov et al. (2022b) and (ii) the class of functionals studied by Robins et al. (2008). The present state-of-the-art estimators for DR functionals $\psi$ are double-machine-learning (DML) estimators (Chernozhukov et al., 2018). A DML estimator $\widehat{\psi}_{1}$ of $\psi$ depends on estimates $\widehat{p} (x)$ and $\widehat{b} (x)$ of a pair of nuisance functions $p(x)$ and $b(x)$, and is said to satisfy "rate double-robustness" if the Cauchy--Schwarz upper bound of its bias is $o (n^{- 1/2})$. Were it achievable, our scientific goal would have been to construct valid, assumption-lean (i.e. no complexity-reducing assumptions on $b$ or $p$) tests of the validity of a nominal $(1 - \alpha)$ Wald confidence interval (CI) centered at $\widehat{\psi}_{1}$. But this would require a test of the bias to be $o (n^{-1/2})$, which can be shown not to exist. We therefore adopt the less ambitious goal of falsifying, when possible, an analyst's justification for her claim that the reported $(1 - \alpha)$ Wald CI is valid. In many instances, an analyst justifies her claim by imposing complexity-reducing assumptions on $b$ and $p$ to ensure "rate double-robustness". Here we exhibit valid, assumption-lean tests of $H_{0}$: "rate double-robustness holds", with non-trivial power against certain alternatives. If $H_{0}$ is rejected, we will have falsified her justification. However, no assumption-lean test of $H_{0}$, including ours, can be a consistent test. Thus, the failure of our test to reject is not meaningful evidence in favor of $H_{0}$.

The Koopman operator provides a linear perspective on non-linear dynamics by focusing on the evolution of observables in an invariant subspace. Observables of interest are typically linearly reconstructed from the Koopman eigenfunctions. Despite the broad use of Koopman operators over the past few years, there exist some misconceptions about the applicability of Koopman operators to dynamical systems with more than one fixed point. In this work, an explanation is provided for the mechanism of lifting for the Koopman operator of nonlinear systems with multiple attractors. Considering the example of the Duffing oscillator, we show that by exploiting the inherent symmetry between the basins of attraction, a linear reconstruction with three degrees of freedom in the Koopman observable space is sufficient to globally linearize the system.

The aim of this article is to infer the connectivity structures of brain regions before and during epileptic seizure. Our contributions are fourfold. First, we propose a 6N-dimensional stochastic differential equation for modelling the activity of N coupled populations of neurons in the brain. This model further develops the (single population) stochastic Jansen and Rit neural mass model, which describes human electroencephalography (EEG) rhythms, in particular signals with epileptic activity. Second, we construct a reliable and efficient numerical scheme for the model simulation, extending a splitting procedure proposed for one neural population. Third, we propose an adapted Sequential Monte Carlo Approximate Bayesian Computation algorithm for simulation-based inference of both the relevant real-valued model parameters as well as the {0,1}-valued network parameters, the latter describing the coupling directions among the N modelled neural populations. Fourth, after illustrating and validating the proposed statistical approach on different types of simulated data, we apply it to a set of multi-channel EEG data recorded before and during an epileptic seizure. The real data experiments suggest, for example, a larger activation in each neural population and a stronger connectivity on the left brain hemisphere during seizure.

Knowledge graphs (KGs) of real-world facts about entities and their relationships are useful resources for a variety of natural language processing tasks. However, because knowledge graphs are typically incomplete, it is useful to perform knowledge graph completion or link prediction, i.e. predict whether a relationship not in the knowledge graph is likely to be true. This paper serves as a comprehensive survey of embedding models of entities and relationships for knowledge graph completion, summarizing up-to-date experimental results on standard benchmark datasets and pointing out potential future research directions.

北京阿比特科技有限公司