亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The history of the seemingly simple problem of straight line fitting in the presence of both $x$ and $y$ errors has been fraught with misadventure, with statistically ad hoc and poorly tested methods abounding in the literature. The problem stems from the emergence of latent variables describing the "true" values of the independent variables, the priors on which have a significant impact on the regression result. By analytic calculation of maximum a posteriori values and biases, and comprehensive numerical mock tests, we assess the quality of possible priors. In the presence of intrinsic scatter, the only prior that we find to give reliably unbiased results in general is a mixture of one or more Gaussians with means and variances determined as part of the inference. We find that a single Gaussian is typically sufficient and dub this model Marginalised Normal Regression (MNR). We illustrate the necessity for MNR by comparing it to alternative methods on an important linear relation in cosmology, and extend it to nonlinear regression and an arbitrary covariance matrix linking $x$ and $y$. We publicly release a Python/Jax implementation of MNR and its Gaussian mixture model extension that is coupled to Hamiltonian Monte Carlo for efficient sampling, which we call ROXY (Regression and Optimisation with X and Y errors).

相關內容

Given a pair of non-negative random variables $X$ and $Y$, we introduce a class of nonparametric tests for the null hypothesis that $X$ dominates $Y$ in the total time on test order. Critical values are determined using bootstrap-based inference, and the tests are shown to be consistent. The same approach is used to construct tests for the excess wealth order. As a byproduct, we also obtain a class of goodness-of-fit tests for the NBUE family of distributions.

We propose a neural network-based meta-learning method to efficiently solve partial differential equation (PDE) problems. The proposed method is designed to meta-learn how to solve a wide variety of PDE problems, and uses the knowledge for solving newly given PDE problems. We encode a PDE problem into a problem representation using neural networks, where governing equations are represented by coefficients of a polynomial function of partial derivatives, and boundary conditions are represented by a set of point-condition pairs. We use the problem representation as an input of a neural network for predicting solutions, which enables us to efficiently predict problem-specific solutions by the forwarding process of the neural network without updating model parameters. To train our model, we minimize the expected error when adapted to a PDE problem based on the physics-informed neural network framework, by which we can evaluate the error even when solutions are unknown. We demonstrate that our proposed method outperforms existing methods in predicting solutions of PDE problems.

We consider the problem of finding edge-disjoint paths between given pairs of vertices in a sufficiently strong $d$-regular expander graph $G$ with $n$ vertices. In particular, we describe a deterministic, polynomial time algorithm which maintains an initially empty collection of edge-disjoint paths $\mathcal P$ in $G$ and fulfills any series of two types of requests: 1. Given two vertices $a$ and $b$ such that each appears as an endpoint in $O(d)$ paths in $\mathcal P$ and, additionally, $|\mathcal P| = O(n d / \log n)$, the algorithm finds a path of length at most $\log n$ connecting $a$ and $b$ which is edge-disjoint from all other paths in $\mathcal P$, and adds it to $\mathcal P$. 2. Remove a given path $P \in \mathcal{P}$ from $\mathcal{P}$. Importantly, each request is processed before seeing the next one. The upper bound on the length of found paths and the constraints are the best possible up to a constant factor. This establishes the first online algorithm for finding edge-disjoint paths in expanders which also allows removals, significantly strengthening a long list of previous results on the topic.

Austrin showed that the approximation ratio $\beta\approx 0.94016567$ obtained by the MAX 2-SAT approximation algorithm of Lewin, Livnat and Zwick (LLZ) is optimal modulo the Unique Games Conjecture (UGC) and modulo a Simplicity Conjecture that states that the worst performance of the algorithm is obtained on so called simple configurations. We prove Austrin's conjecture, thereby showing the optimality of the LLZ approximation algorithm, relying only on the Unique Games Conjecture. Our proof uses a combination of analytic and computational tools. We also present new approximation algorithms for two restrictions of the MAX 2-SAT problem. For MAX HORN-$\{1,2\}$-SAT, i.e., MAX CSP$(\{x\lor y,\bar{x}\lor y,x,\bar{x}\})$, in which clauses are not allowed to contain two negated literals, we obtain an approximation ratio of $0.94615981$. For MAX CSP$(\{x\lor y,x,\bar{x}\})$, i.e., when 2-clauses are not allowed to contain negated literals, we obtain an approximation ratio of $0.95397990$. By adapting Austrin's and our arguments for the MAX 2-SAT problem we show that these two approximation ratios are also tight, modulo only the UGC conjecture. This completes a full characterization of the approximability of the MAX 2-SAT problem and its restrictions.

As is well known, differential algebraic equations (DAEs), which are able to describe dynamic changes and underlying constraints, have been widely applied in engineering fields such as fluid dynamics, multi-body dynamics, mechanical systems and control theory. In practical physical modeling within these domains, the systems often generate high-index DAEs. Classical implicit numerical methods typically result in varying order reduction of numerical accuracy when solving high-index systems.~Recently, the physics-informed neural network (PINN) has gained attention for solving DAE systems. However, it faces challenges like the inability to directly solve high-index systems, lower predictive accuracy, and weaker generalization capabilities. In this paper, we propose a PINN computational framework, combined Radau IIA numerical method with a neural network structure via the attention mechanisms, to directly solve high-index DAEs. Furthermore, we employ a domain decomposition strategy to enhance solution accuracy. We conduct numerical experiments with two classical high-index systems as illustrative examples, investigating how different orders of the Radau IIA method affect the accuracy of neural network solutions. The experimental results demonstrate that the PINN based on a 5th-order Radau IIA method achieves the highest level of system accuracy. Specifically, the absolute errors for all differential variables remains as low as $10^{-6}$, and the absolute errors for algebraic variables is maintained at $10^{-5}$, surpassing the results found in existing literature. Therefore, our method exhibits excellent computational accuracy and strong generalization capabilities, providing a feasible approach for the high-precision solution of larger-scale DAEs with higher indices or challenging high-dimensional partial differential algebraic equation systems.

Classes of target functions containing a large number of approximately orthogonal elements are known to be hard to learn by the Statistical Query algorithms. Recently this classical fact re-emerged in a theory of gradient-based optimization of neural networks. In the novel framework, the hardness of a class is usually quantified by the variance of the gradient with respect to a random choice of a target function. A set of functions of the form $x\to ax \bmod p$, where $a$ is taken from ${\mathbb Z}_p$, has attracted some attention from deep learning theorists and cryptographers recently. This class can be understood as a subset of $p$-periodic functions on ${\mathbb Z}$ and is tightly connected with a class of high-frequency periodic functions on the real line. We present a mathematical analysis of limitations and challenges associated with using gradient-based learning techniques to train a high-frequency periodic function or modular multiplication from examples. We highlight that the variance of the gradient is negligibly small in both cases when either a frequency or the prime base $p$ is large. This in turn prevents such a learning algorithm from being successful.

Determining the weight distribution of a code is an old and fundamental topic in coding theory that has been thoroughly studied. In 1977, Helleseth, Kl{\o}ve, and Mykkeltveit presented a weight enumerator polynomial of the lifted code over $\mathbb{F}_{q^\ell}$ of a $q$-ary linear code with significant combinatorial properties, which can determine the support weight distribution of this linear code. The Solomon-Stiffler codes are a family of famous Griesmer codes, which were proposed by Solomon and Stiffler in 1965. In this paper, we determine the weight enumerator polynomials of the lifted codes of the projective Solomon-Stiffler codes using some combinatorial properties of subspaces. As a result, we determine the support weight distributions of the projective Solomon-Stiffler codes. In particular, we determine the weight hierarchies of the projective Solomon-Stiffler codes.

We prove tight H\"olderian error bounds for all $p$-cones. Surprisingly, the exponents differ in several ways from those that have been previously conjectured; moreover, they illuminate $p$-cones as a curious example of a class of objects that possess properties in 3 dimensions that they do not in 4 or more. Using our error bounds, we analyse least squares problems with $p$-norm regularization, where our results enable us to compute the corresponding KL exponents for previously inaccessible values of $p$. Another application is a (relatively) simple proof that most $p$-cones are neither self-dual nor homogeneous. Our error bounds are obtained under the framework of facial residual functions, and we expand it by establishing for general cones an optimality criterion under which the resulting error bound must be tight.

In this article, we focus on the error that is committed when computing the matrix logarithm using the Gauss--Legendre quadrature rules. These formulas can be interpreted as Pad\'e approximants of a suitable Gauss hypergeometric function. Empirical observation tells us that the convergence of these quadratures becomes slow when the matrix is not close to the identity matrix, thus suggesting the usage of an inverse scaling and squaring approach for obtaining a matrix with this property. The novelty of this work is the introduction of error estimates that can be used to select a priori both the number of Legendre points needed to obtain a given accuracy and the number of inverse scaling and squaring to be performed. We include some numerical experiments to show the reliability of the estimates introduced.

A modelling framework suitable for detecting shape shifts in functional profiles combining the notion of Fr\'echet mean and the concept of deformation models is developed and proposed. The generalized mean sense offered by the Fr\'echet mean notion is employed to capture the typical pattern of the profiles under study, while the concept of deformation models, and in particular of the shape invariant model, allows for interpretable parameterizations of profile's deviations from the typical shape. EWMA-type control charts compatible with the functional nature of data and the employed deformation model are built and proposed, exploiting certain shape characteristics of the profiles under study with respect to the generalized mean sense, allowing for the identification of potential shifts concerning the shape and/or the deformation process. Potential shifts in the shape deformation process, are further distinguished to significant shifts with respect to amplitude and/or the phase of the profile under study. The proposed modelling and shift detection framework is implemented to a real world case study, where daily concentration profiles concerning air pollutants from an area in the city of Athens are modelled, while profiles indicating hazardous concentration levels are successfully identified in most of the cases.

北京阿比特科技有限公司