We consider the problem of finding edge-disjoint paths between given pairs of vertices in a sufficiently strong $d$-regular expander graph $G$ with $n$ vertices. In particular, we describe a deterministic, polynomial time algorithm which maintains an initially empty collection of edge-disjoint paths $\mathcal P$ in $G$ and fulfills any series of two types of requests: 1. Given two vertices $a$ and $b$ such that each appears as an endpoint in $O(d)$ paths in $\mathcal P$ and, additionally, $|\mathcal P| = O(n d / \log n)$, the algorithm finds a path of length at most $\log n$ connecting $a$ and $b$ which is edge-disjoint from all other paths in $\mathcal P$, and adds it to $\mathcal P$. 2. Remove a given path $P \in \mathcal{P}$ from $\mathcal{P}$. Importantly, each request is processed before seeing the next one. The upper bound on the length of found paths and the constraints are the best possible up to a constant factor. This establishes the first online algorithm for finding edge-disjoint paths in expanders which also allows removals, significantly strengthening a long list of previous results on the topic.
Lax extensions of set functors play a key role in various areas including topology, concurrent systems, and modal logic, while predicate liftings provide a generic semantics of modal operators. We take a fresh look at the connection between lax extensions and predicate liftings from the point of view of quantale-enriched relations. Using this perspective, we show in particular that various fundamental concepts and results arise naturally and their proofs become very elementary. Ultimately, we prove that every lax extension is induced by a class of predicate liftings; we discuss several implications of this result.
The problem of recovering a moment-determinate multivariate function $f$ via its moment sequence is studied. Under mild conditions on $f$, the point-wise and $L_1$-rates of convergence for the proposed constructions are established. The cases where $f$ is the indicator function of a set, and represents a discrete probability mass function are also investigated. Calculations of the approximants and simulation studies are conducted to graphically illustrate the behavior of the approximations in several simple examples. Analytical and simulated errors of proposed approximations are recorded in Tables 1-3.
This work puts forth low-complexity Riemannian subspace descent algorithms for the minimization of functions over the symmetric positive definite (SPD) manifold. Different from the existing Riemannian gradient descent variants, the proposed approach utilizes carefully chosen subspaces that allow the update to be written as a product of the Cholesky factor of the iterate and a sparse matrix. The resulting updates avoid the costly matrix operations like matrix exponentiation and dense matrix multiplication, which are generally required in almost all other Riemannian optimization algorithms on SPD manifold. We further identify a broad class of functions, arising in diverse applications, such as kernel matrix learning, covariance estimation of Gaussian distributions, maximum likelihood parameter estimation of elliptically contoured distributions, and parameter estimation in Gaussian mixture model problems, over which the Riemannian gradients can be calculated efficiently. The proposed uni-directional and multi-directional Riemannian subspace descent variants incur per-iteration complexities of $\O(n)$ and $\O(n^2)$ respectively, as compared to the $\O(n^3)$ or higher complexity incurred by all existing Riemannian gradient descent variants. The superior runtime and low per-iteration complexity of the proposed algorithms is also demonstrated via numerical tests on large-scale covariance estimation and matrix square root problems.
We numerically demonstrate a silicon add-drop microring-based reservoir computing scheme that combines parallel delayed inputs and wavelength division multiplexing. The scheme solves memory-demanding tasks like time-series prediction with good performance without requiring external optical feedback.
For a fixed integer $k\ge 2$, a $k$-community structure in an undirected graph is a partition of its vertex set into $k$ sets called communities, each of size at least two, such that every vertex of the graph has proportionally at least as many neighbours in its own community as in any other community. In this paper, we give a necessary and sufficient condition for a forest on $n$ vertices to admit a $k$-community structure. Furthermore, we provide an $O(n^{2})$-time algorithm that computes such a $k$-community structure in a forest, if it exists. These results extend a result of [Bazgan et al., Structural and algorithmic properties of $2$-community structure, Algorithmica, 80(6):1890-1908, 2018]. We also show that if communities are allowed to have size one, then every forest with $n \geq k\geq 2$ vertices admits a $k$-community structure that can be found in time $O(n^{2})$. We then consider threshold graphs and show that every connected threshold graph admits a $2$-community structure if and only if it is not isomorphic to a star; also if such a $2$-community structure exists, we explain how to obtain it in linear time. We further describe two infinite families of disconnected threshold graphs, containing exactly one isolated vertex, that do not admit any $2$-community structure. Finally, we present a new infinite family of connected graphs that may contain an even or an odd number of vertices without $2$-community structures, even if communities are allowed to have size one.
This paper presents $\textbf{R}$epresentation-$\textbf{C}$onditioned image $\textbf{G}$eneration (RCG), a simple yet effective image generation framework which sets a new benchmark in class-unconditional image generation. RCG does not condition on any human annotations. Instead, it conditions on a self-supervised representation distribution which is mapped from the image distribution using a pre-trained encoder. During generation, RCG samples from such representation distribution using a representation diffusion model (RDM), and employs a pixel generator to craft image pixels conditioned on the sampled representation. Such a design provides substantial guidance during the generative process, resulting in high-quality image generation. Tested on ImageNet 256$\times$256, RCG achieves a Frechet Inception Distance (FID) of 3.31 and an Inception Score (IS) of 253.4. These results not only significantly improve the state-of-the-art of class-unconditional image generation but also rival the current leading methods in class-conditional image generation, bridging the long-standing performance gap between these two tasks. Code is available at //github.com/LTH14/rcg.
Robust Markov Decision Processes (RMDPs) are a widely used framework for sequential decision-making under parameter uncertainty. RMDPs have been extensively studied when the objective is to maximize the discounted return, but little is known for average optimality (optimizing the long-run average of the rewards obtained over time) and Blackwell optimality (remaining discount optimal for all discount factors sufficiently close to 1). In this paper, we prove several foundational results for RMDPs beyond the discounted return. We show that average optimal policies can be chosen stationary and deterministic for sa-rectangular RMDPs but, perhaps surprisingly, that history-dependent (Markovian) policies strictly outperform stationary policies for average optimality in s-rectangular RMDPs. We also study Blackwell optimality for sa-rectangular RMDPs, where we show that {\em approximate} Blackwell optimal policies always exist, although Blackwell optimal policies may not exist. We also provide a sufficient condition for their existence, which encompasses virtually any examples from the literature. We then discuss the connection between average and Blackwell optimality, and we describe several algorithms to compute the optimal average return. Interestingly, our approach leverages the connections between RMDPs and stochastic games.
Large-scale language models (LLMs), such as ChatGPT, are becoming increasingly sophisticated and exhibit human-like capabilities, playing an essential role in assisting humans in a variety of everyday tasks. An important application of AI is interactive recommendation systems that respond to human inquiries and make recommendations tailored to the user. In most conventional interactive recommendation systems, the language model is used only as a dialogue model, and there is a separate recommendation system. This is due to the fact that the language model used as a dialogue system does not have the capability to serve as a recommendation system. Therefore, we will realize the construction of a dialogue system with recommendation capability by using OpenAI's Chat-GPT, which has a very high inference capability as a dialogue system and the ability to generate high-quality sentences, and verify the effectiveness of the system.
We present a demonstration of image classification using an echo-state network (ESN) relying on a single simulated spintronic nanostructure known as the vortex-based spin-torque oscillator (STVO) delayed in time. We employ an ultrafast data-driven simulation framework called the data-driven Thiele equation approach (DD-TEA) to simulate the STVO dynamics. This allows us to avoid the challenges associated with repeated experimental manipulation of such a nanostructured system. We showcase the versatility of our solution by successfully applying it to solve classification challenges with the MNIST, EMNIST-letters and Fashion MNIST datasets. Through our simulations, we determine that within a large ESN the results obtained using the STVO dynamics as an activation function are comparable to the ones obtained with other conventional nonlinear activation functions like the reLU and the sigmoid. While achieving state-of-the-art accuracy levels on the MNIST dataset, our model's performance on EMNIST-letters and Fashion MNIST is lower due to the relative simplicity of the system architecture and the increased complexity of the tasks. We expect that the DD-TEA framework will enable the exploration of deeper architectures, ultimately leading to improved classification accuracy.
We provide numerical bounds on the Crouzeix ratiofor KLS matrices $A$ which have a line segment on the boundary of the numerical range. The Crouzeix ratio is the supremum over all polynomials $p$ of the spectral norm of $p(A)$ dividedby the maximum absolute value of $p$ on the numerical range of $A$.Our bounds confirm the conjecture that this ratiois less than or equal to $2$. We also give a precise description of these numerical ranges.