亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a novel approach to adapting pre-trained large language models (LLMs) to perform question answering (QA) and speech continuation. By endowing the LLM with a pre-trained speech encoder, our model becomes able to take speech inputs and generate speech outputs. The entire system is trained end-to-end and operates directly on spectrograms, simplifying our architecture. Key to our approach is a training objective that jointly supervises speech recognition, text continuation, and speech synthesis using only paired speech-text pairs, enabling a `cross-modal' chain-of-thought within a single decoding pass. Our method surpasses existing spoken language models in speaker preservation and semantic coherence. Furthermore, the proposed model improves upon direct initialization in retaining the knowledge of the original LLM as demonstrated through spoken QA datasets. Audio samples can be found at //michelleramanovich.github.io/spectron/spectron

相關內容

自(zi)動問(wen)答(da)(da)(Question Answering, QA)是(shi)指利用(yong)計(ji)算機自(zi)動回(hui)答(da)(da)用(yong)戶(hu)(hu)所提出的(de)(de)問(wen)題(ti)以滿足用(yong)戶(hu)(hu)知(zhi)識(shi)需求的(de)(de)任務。不(bu)同于現有搜索引(yin)擎(qing),問(wen)答(da)(da)系(xi)統是(shi)信息服務的(de)(de)一種高級形式,系(xi)統返回(hui)用(yong)戶(hu)(hu)的(de)(de)不(bu)再是(shi)基于關鍵詞匹配排序(xu)的(de)(de)文(wen)檔(dang)列(lie)表,而是(shi)精準的(de)(de)自(zi)然語言答(da)(da)案。近年來,隨著(zhu)人工智能的(de)(de)飛速發展(zhan),自(zi)動問(wen)答(da)(da)已經成(cheng)為倍(bei)受關注(zhu)且發展(zhan)前景廣泛的(de)(de)研(yan)究方(fang)向。

知識薈萃

精品入門和進階教程、論文和代碼(ma)整理等

更多

查看(kan)相關VIP內容(rong)、論文、資訊等

This paper studies using foundational large language models (LLMs) to make decisions during hyperparameter optimization (HPO). Empirical evaluations demonstrate that in settings with constrained search budgets, LLMs can perform comparably or better than traditional HPO methods like random search and Bayesian optimization on standard benchmarks. Furthermore, we propose to treat the code specifying our model as a hyperparameter, which the LLM outputs, going beyond the capabilities of existing HPO approaches. Our findings suggest that LLMs are a promising tool for improving efficiency in the traditional decision-making problem of hyperparameter optimization.

In text-to-speech (TTS) synthesis, diffusion models have achieved promising generation quality. However, because of the pre-defined data-to-noise diffusion process, their prior distribution is restricted to a noisy representation, which provides little information of the generation target. In this work, we present a novel TTS system, Bridge-TTS, making the first attempt to substitute the noisy Gaussian prior in established diffusion-based TTS methods with a clean and deterministic one, which provides strong structural information of the target. Specifically, we leverage the latent representation obtained from text input as our prior, and build a fully tractable Schrodinger bridge between it and the ground-truth mel-spectrogram, leading to a data-to-data process. Moreover, the tractability and flexibility of our formulation allow us to empirically study the design spaces such as noise schedules, as well as to develop stochastic and deterministic samplers. Experimental results on the LJ-Speech dataset illustrate the effectiveness of our method in terms of both synthesis quality and sampling efficiency, significantly outperforming our diffusion counterpart Grad-TTS in 50-step/1000-step synthesis and strong fast TTS models in few-step scenarios. Project page: //bridge-tts.github.io/

This study performs BERT-based analysis, which is a representative contextualized language model, on corporate disclosure data to predict impending bankruptcies. Prior literature on bankruptcy prediction mainly focuses on developing more sophisticated prediction methodologies with financial variables. However, in our study, we focus on improving the quality of input dataset. Specifically, we employ BERT model to perform sentiment analysis on MD&A disclosures. We show that BERT outperforms dictionary-based predictions and Word2Vec-based predictions in terms of adjusted R-square in logistic regression, k-nearest neighbor (kNN-5), and linear kernel support vector machine (SVM). Further, instead of pre-training the BERT model from scratch, we apply self-learning with confidence-based filtering to corporate disclosure data (10-K). We achieve the accuracy rate of 91.56% and demonstrate that the domain adaptation procedure brings a significant improvement in prediction accuracy.

We propose a new method, Adversarial In-Context Learning (adv-ICL), to optimize prompt for in-context learning (ICL) by employing one LLM as a generator, another as a discriminator, and a third as a prompt modifier. As in traditional adversarial learning, adv-ICL is implemented as a two-player game between the generator and discriminator, where the generator tries to generate realistic enough output to fool the discriminator. In each round, given an input prefixed by task instructions and several exemplars, the generator produces an output. The discriminator is then tasked with classifying the generator input-output pair as model-generated or real data. Based on the discriminator loss, the prompt modifier proposes possible edits to the generator and discriminator prompts, and the edits that most improve the adversarial loss are selected. We show that adv-ICL results in significant improvements over state-of-the-art prompt optimization techniques for both open and closed-source models on 11 generation and classification tasks including summarization, arithmetic reasoning, machine translation, data-to-text generation, and the MMLU and big-bench hard benchmarks. In addition, because our method uses pre-trained models and updates only prompts rather than model parameters, it is computationally efficient, easy to extend to any LLM and task, and effective in low-resource settings.

While large language models (LLMs) have demonstrated impressive performance on a range of decision-making tasks, they rely on simple acting processes and fall short of broad deployment as autonomous agents. We introduce LATS (Language Agent Tree Search), a general framework that synergizes the capabilities of LLMs in planning, acting, and reasoning. Drawing inspiration from Monte Carlo tree search in model-based reinforcement learning, LATS employs LLMs as agents, value functions, and optimizers, repurposing their latent strengths for enhanced decision-making. What is crucial in this method is the use of an environment for external feedback, which offers a more deliberate and adaptive problem-solving mechanism that moves beyond the limitations of existing techniques. Our experimental evaluation across diverse domains, such as programming, HotPotQA, and WebShop, illustrates the applicability of LATS for both reasoning and acting. In particular, LATS achieves 94.4% for programming on HumanEval with GPT-4 and an average score of 75.9 for web browsing on WebShop with GPT-3.5, demonstrating the effectiveness and generality of our method.

Non-IID data present a tough challenge for federated learning. In this paper, we explore a novel idea of facilitating pairwise collaborations between clients with similar data. We propose FedAMP, a new method employing federated attentive message passing to facilitate similar clients to collaborate more. We establish the convergence of FedAMP for both convex and non-convex models, and propose a heuristic method to further improve the performance of FedAMP when clients adopt deep neural networks as personalized models. Our extensive experiments on benchmark data sets demonstrate the superior performance of the proposed methods.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

Few-shot learning aims to learn novel categories from very few samples given some base categories with sufficient training samples. The main challenge of this task is the novel categories are prone to dominated by color, texture, shape of the object or background context (namely specificity), which are distinct for the given few training samples but not common for the corresponding categories (see Figure 1). Fortunately, we find that transferring information of the correlated based categories can help learn the novel concepts and thus avoid the novel concept being dominated by the specificity. Besides, incorporating semantic correlations among different categories can effectively regularize this information transfer. In this work, we represent the semantic correlations in the form of structured knowledge graph and integrate this graph into deep neural networks to promote few-shot learning by a novel Knowledge Graph Transfer Network (KGTN). Specifically, by initializing each node with the classifier weight of the corresponding category, a propagation mechanism is learned to adaptively propagate node message through the graph to explore node interaction and transfer classifier information of the base categories to those of the novel ones. Extensive experiments on the ImageNet dataset show significant performance improvement compared with current leading competitors. Furthermore, we construct an ImageNet-6K dataset that covers larger scale categories, i.e, 6,000 categories, and experiments on this dataset further demonstrate the effectiveness of our proposed model.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

北京阿比特科技有限公司