亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

White matter bundle segmentation is a cornerstone of modern tractography to study the brain's structural connectivity in domains such as neurological disorders, neurosurgery, and aging. In this study, we present FIESTA (FIbEr Segmentation in Tractography using Autoencoders), a reliable and robust, fully automated, and easily semi-automatically calibrated pipeline based on deep autoencoders that can dissect and fully populate white matter bundles. This pipeline is built upon previous works that demonstrated how autoencoders can be used successfully for streamline filtering, bundle segmentation, and streamline generation in tractography. Our proposed method improves bundle segmentation coverage by recovering hard-to-track bundles with generative sampling through the latent space seeding of the subject bundle and the atlas bundle. A latent space of streamlines is learned using autoencoder-based modeling combined with contrastive learning. Using an atlas of bundles in standard space (MNI), our proposed method segments new tractograms using the autoencoder latent distance between each tractogram streamline and its closest neighbor bundle in the atlas of bundles. Intra-subject bundle reliability is improved by recovering hard-to-track streamlines, using the autoencoder to generate new streamlines that increase the spatial coverage of each bundle while remaining anatomically correct. Results show that our method is more reliable than state-of-the-art automated virtual dissection methods such as RecoBundles, RecoBundlesX, TractSeg, White Matter Analysis and XTRACT. Our framework allows for the transition from one anatomical bundle definition to another with marginal calibration efforts. Overall, these results show that our framework improves the practicality and usability of current state-of-the-art bundle segmentation framework.

相關內容

自動編碼器是一種人工神經網絡,用于以無監督的方式學習有效的數據編碼。自動編碼器的目的是通過訓練網絡忽略信號“噪聲”來學習一組數據的表示(編碼),通常用于降維。與簡化方面一起,學習了重構方面,在此,自動編碼器嘗試從簡化編碼中生成盡可能接近其原始輸入的表示形式,從而得到其名稱。基本模型存在幾種變體,其目的是迫使學習的輸入表示形式具有有用的屬性。自動編碼器可有效地解決許多應用問題,從面部識別到獲取單詞的語義。

Language models (LMs) have recently flourished in natural language processing and computer vision, generating high-fidelity texts or images in various tasks. In contrast, the current speech generative models are still struggling regarding speech quality and task generalization. This paper presents Vec-Tok Speech, an extensible framework that resembles multiple speech generation tasks, generating expressive and high-fidelity speech. Specifically, we propose a novel speech codec based on speech vectors and semantic tokens. Speech vectors contain acoustic details contributing to high-fidelity speech reconstruction, while semantic tokens focus on the linguistic content of speech, facilitating language modeling. Based on the proposed speech codec, Vec-Tok Speech leverages an LM to undertake the core of speech generation. Moreover, Byte-Pair Encoding (BPE) is introduced to reduce the token length and bit rate for lower exposure bias and longer context coverage, improving the performance of LMs. Vec-Tok Speech can be used for intra- and cross-lingual zero-shot voice conversion (VC), zero-shot speaking style transfer text-to-speech (TTS), speech-to-speech translation (S2ST), speech denoising, and speaker de-identification and anonymization. Experiments show that Vec-Tok Speech, built on 50k hours of speech, performs better than other SOTA models. Code will be available at //github.com/BakerBunker/VecTok .

With the emergence of Transformer architectures and their powerful understanding of textual data, a new horizon has opened up to predict the molecular properties based on text description. While SMILES are the most common form of representation, they are lacking robustness, rich information and canonicity, which limit their effectiveness in becoming generalizable representations. Here, we present GPT-MolBERTa, a self-supervised large language model (LLM) which uses detailed textual descriptions of molecules to predict their properties. A text based description of 326000 molecules were collected using ChatGPT and used to train LLM to learn the representation of molecules. To predict the properties for the downstream tasks, both BERT and RoBERTa models were used in the finetuning stage. Experiments show that GPT-MolBERTa performs well on various molecule property benchmarks, and approaching state of the art performance in regression tasks. Additionally, further analysis of the attention mechanisms show that GPT-MolBERTa is able to pick up important information from the input textual data, displaying the interpretability of the model.

Cosine similarity is the common choice for measuring the distance between the feature representations in contrastive visual-textual alignment learning. However, empirically a learnable softmax temperature parameter is required when learning on large-scale noisy training data. In this work, we first discuss the role of softmax temperature from the embedding space's topological properties. We argue that the softmax temperature is the key mechanism for contrastive learning on noisy training data. It acts as a scaling factor of the distance range (e.g. [-1, 1] for the cosine similarity), and its learned value indicates the level of noise in the training data. Then, we propose an alternative design of the topology for the embedding alignment. We make use of multiple class tokens in the transformer architecture; then map the feature representations onto an oblique manifold endowed with the negative inner product as the distance function. With this configuration, we largely improve the zero-shot classification performance of baseline CLIP models pre-trained on large-scale datasets by an average of 6.1\%.

Controlling spurious oscillations is crucial for designing reliable numerical schemes for hyperbolic conservation laws. This paper proposes a novel, robust, and efficient oscillation-eliminating discontinuous Galerkin (OEDG) method on general meshes, motivated by the damping technique in [Lu, Liu, and Shu, SIAM J. Numer. Anal., 59:1299-1324, 2021]. The OEDG method incorporates an OE procedure after each Runge-Kutta stage, devised by alternately evolving conventional semidiscrete DG scheme and a damping equation. A novel damping operator is carefully designed to possess scale-invariant and evolution-invariant properties. We rigorously prove optimal error estimates of the fully discrete OEDG method for linear scalar conservation laws. This might be the first generic fully-discrete error estimates for nonlinear DG schemes with automatic oscillation control mechanism. The OEDG method exhibits many notable advantages. It effectively eliminates spurious oscillations for challenging problems across various scales and wave speeds, without problem-specific parameters. It obviates the need for characteristic decomposition in hyperbolic systems. It retains key properties of conventional DG method, such as conservation, optimal convergence rates, and superconvergence. Moreover, it remains stable under normal CFL condition. The OE procedure is non-intrusive, facilitating integration into existing DG codes as an independent module. Its implementation is easy and efficient, involving only simple multiplications of modal coefficients by scalars. The OEDG approach provides new insights into the damping mechanism for oscillation control. It reveals the role of damping operator as a modal filter and establishes close relations between the damping and spectral viscosity techniques. Extensive numerical results confirm the theoretical analysis and validate the effectiveness and advantages of the OEDG method.

A long-standing issue in the parallel-in-time community is the poor convergence of standard iterative parallel-in-time methods for hyperbolic partial differential equations (PDEs), and for advection-dominated PDEs more broadly. Here, a local Fourier analysis (LFA) convergence theory is derived for the two-level variant of the iterative parallel-in-time method of multigrid reduction-in-time (MGRIT). This closed-form theory allows for new insights into the poor convergence of MGRIT for advection-dominated PDEs when using the standard approach of rediscretizing the fine-grid problem on the coarse grid. Specifically, we show that this poor convergence arises, at least in part, from inadequate coarse-grid correction of certain smooth Fourier modes known as characteristic components, which was previously identified as causing poor convergence of classical spatial multigrid on steady-state advection-dominated PDEs. We apply this convergence theory to show that, for certain semi-Lagrangian discretizations of advection problems, MGRIT convergence using rediscretized coarse-grid operators cannot be robust with respect to CFL number or coarsening factor. A consequence of this analysis is that techniques developed for improving convergence in the spatial multigrid context can be re-purposed in the MGRIT context to develop more robust parallel-in-time solvers. This strategy has been used in recent work to great effect; here, we provide further theoretical evidence supporting the effectiveness of this approach.

Bayesian variable selection methods are powerful techniques for fitting and inferring on sparse high-dimensional linear regression models. However, many are computationally intensive or require restrictive prior distributions on model parameters. In this paper, we proposed a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression. Minimal prior assumptions on the parameters are required through the use of plug-in empirical Bayes estimates of hyperparameters. Efficient maximum a posteriori (MAP) estimation is completed through a Parameter-Expanded Expectation-Conditional-Maximization (PX-ECM) algorithm. The PX-ECM results in a robust computationally efficient coordinate-wise optimization which -- when updating the coefficient for a particular predictor -- adjusts for the impact of other predictor variables. The completion of the E-step uses an approach motivated by the popular two-group approach to multiple testing. The result is a PaRtitiOned empirical Bayes Ecm (PROBE) algorithm applied to sparse high-dimensional linear regression, which can be completed using one-at-a-time or all-at-once type optimization. We compare the empirical properties of PROBE to comparable approaches with numerous simulation studies and analyses of cancer cell drug responses. The proposed approach is implemented in the R package probe.

Research in high energy physics (HEP) requires huge amounts of computing and storage, putting strong constraints on the code speed and resource usage. To meet these requirements, a compiled high-performance language is typically used; while for physicists, who focus on the application when developing the code, better research productivity pleads for a high-level programming language. A popular approach consists of combining Python, used for the high-level interface, and C++, used for the computing intensive part of the code. A more convenient and efficient approach would be to use a language that provides both high-level programming and high-performance. The Julia programming language, developed at MIT especially to allow the use of a single language in research activities, has followed this path. In this paper the applicability of using the Julia language for HEP research is explored, covering the different aspects that are important for HEP code development: runtime performance, handling of large projects, interface with legacy code, distributed computing, training, and ease of programming. The study shows that the HEP community would benefit from a large scale adoption of this programming language. The HEP-specific foundation libraries that would need to be consolidated are identified

Logical modeling is a powerful tool in biology, offering a system-level understanding of the complex interactions that govern biological processes. A gap that hinders the scalability of logical models is the need to specify the update function of every vertex in the network depending on the status of its predecessors. To address this, we introduce in this paper the concept of strong regulation, where a vertex is only updated to active/inactive if all its predecessors agree in their influences; otherwise, it is set to ambiguous. We explore the interplay between active, inactive, and ambiguous influences in a network. We discuss the existence of phenotype attractors in such networks, where the status of some of the variables is fixed to active/inactive, while the others can have an arbitrary status, including ambiguous.

The emergence of complex structures in the systems governed by a simple set of rules is among the most fascinating aspects of Nature. The particularly powerful and versatile model suitable for investigating this phenomenon is provided by cellular automata, with the Game of Life being one of the most prominent examples. However, this simplified model can be too limiting in providing a tool for modelling real systems. To address this, we introduce and study an extended version of the Game of Life, with the dynamical process governing the rule selection at each step. We show that the introduced modification significantly alters the behaviour of the game. We also demonstrate that the choice of the synchronization policy can be used to control the trade-off between the stability and the growth in the system.

Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.

北京阿比特科技有限公司