Research in high energy physics (HEP) requires huge amounts of computing and storage, putting strong constraints on the code speed and resource usage. To meet these requirements, a compiled high-performance language is typically used; while for physicists, who focus on the application when developing the code, better research productivity pleads for a high-level programming language. A popular approach consists of combining Python, used for the high-level interface, and C++, used for the computing intensive part of the code. A more convenient and efficient approach would be to use a language that provides both high-level programming and high-performance. The Julia programming language, developed at MIT especially to allow the use of a single language in research activities, has followed this path. In this paper the applicability of using the Julia language for HEP research is explored, covering the different aspects that are important for HEP code development: runtime performance, handling of large projects, interface with legacy code, distributed computing, training, and ease of programming. The study shows that the HEP community would benefit from a large scale adoption of this programming language. The HEP-specific foundation libraries that would need to be consolidated are identified
Machine learning with neural networks is now becoming a more and more powerful tool for various tasks, such as natural language processing, image recognition, winning the game, and even for the issues of physics. Although there are many studies on the application of machine learning to numerical calculation and the assistance of experimental detection, the methods of applying machine learning to find the analytical method are poorly studied. In this paper, we propose the frameworks of developing analytical methods in physics by using the symbolic regression with the Alpha Zero algorithm, that is Alpha Zero for physics (AZfP). As a demonstration, we show that AZfP can derive the high-frequency expansion in the Floquet systems. AZfP may have the possibility of developing a new theoretical framework in physics.
Sequential neural posterior estimation (SNPE) techniques have been recently proposed for dealing with simulation-based models with intractable likelihoods. Unlike approximate Bayesian computation, SNPE techniques learn the posterior from sequential simulation using neural network-based conditional density estimators. This paper reclaims SNPE-B proposed by Lueckmann et al. (2017), which suffers from inefficiency and slow inference due to inefficient utilization of simulated data and high variance of parameter updates. To address these issues, we firstly introduce a concentrated loss function based on an adaptive calibration kernel that reweights the simulated data appropriately to improve the data efficiency. Moreover, we provide a theoretical analysis of the variance of associated Monte Carlo estimators. Based on this analysis, we then propose several variance reduction techniques to further accelerate the process of learning. Numerical experiments demonstrate that our method outperforms the original method together with other existing competitors on certain tasks.
With advances in scientific computing and mathematical modeling, complex scientific phenomena such as galaxy formations and rocket propulsion can now be reliably simulated. Such simulations can however be very time-intensive, requiring millions of CPU hours to perform. One solution is multi-fidelity emulation, which uses data of different fidelities to train an efficient predictive model which emulates the expensive simulator. For complex scientific problems and with careful elicitation from scientists, such multi-fidelity data may often be linked by a directed acyclic graph (DAG) representing its scientific model dependencies. We thus propose a new Graphical Multi-fidelity Gaussian Process (GMGP) model, which embeds this DAG structure (capturing scientific dependencies) within a Gaussian process framework. We show that the GMGP has desirable modeling traits via two Markov properties, and admits a scalable algorithm for recursive computation of the posterior mean and variance along at each depth level of the DAG. We also present a novel experimental design methodology over the DAG given an experimental budget, and propose a nonlinear extension of the GMGP via deep Gaussian processes. The advantages of the GMGP are then demonstrated via a suite of numerical experiments and an application to emulation of heavy-ion collisions, which can be used to study the conditions of matter in the Universe shortly after the Big Bang. The proposed model has broader uses in data fusion applications with graphical structure, which we further discuss.
Partial differential equations with highly oscillatory input terms are hardly ever solvable analytically and their numerical treatment is difficult. Modulated Fourier expansion used as an {\it ansatz} is a well known and extensively investigated tool in asymptotic numerical approach for this kind of problems. Although the efficiency of this approach has been recognised, its error analysis has not been investigated rigorously for general forms of linear PDEs. In this paper, we start such kind of investigations for a general form of linear PDEs with an input term characterised by a single high frequency. More precisely we derive an analytical form of such an expansion and provide a formula for the error of its truncation. Theoretical investigations are illustrated by computational simulations.
The diffusion of AI and big data is reshaping decision-making processes by increasing the amount of information that supports decisions while reducing direct interaction with data and empirical evidence. This paradigm shift introduces new sources of uncertainty, as limited data observability results in ambiguity and a lack of interpretability. The need for the proper analysis of data-driven strategies motivates the search for new models that can describe this type of bounded access to knowledge. This contribution presents a novel theoretical model for uncertainty in knowledge representation and its transfer mediated by agents. We provide a dynamical description of knowledge states by endowing our model with a structure to compare and combine them. Specifically, an update is represented through combinations, and its explainability is based on its consistency in different dimensional representations. We look at inequivalent knowledge representations in terms of multiplicity of inferences, preference relations, and information measures. Furthermore, we define a formal analogy with two scenarios that illustrate non-classical uncertainty in terms of ambiguity (Ellsberg's model) and reasoning about knowledge mediated by other agents observing data (Wigner's friend). Finally, we discuss some implications of the proposed model for data-driven strategies, with special attention to reasoning under uncertainty about business value dimensions and the design of measurement tools for their assessment.
Capturing the extremal behaviour of data often requires bespoke marginal and dependence models which are grounded in rigorous asymptotic theory, and hence provide reliable extrapolation into the upper tails of the data-generating distribution. We present a modern toolbox of four methodological frameworks, motivated by modern extreme value theory, that can be used to accurately estimate extreme exceedance probabilities or the corresponding level in either a univariate or multivariate setting. Our frameworks were used to facilitate the winning contribution of Team Yalla to the data competition organised for the 13th International Conference on Extreme Value Analysis (EVA2023). This competition comprised seven teams competing across four separate sub-challenges, with each requiring the modelling of data simulated from known, yet highly complex, statistical distributions, and extrapolation far beyond the range of the available samples in order to predict probabilities of extreme events. Data were constructed to be representative of real environmental data, sampled from the fantasy country of "Utopia".
Human motion trajectory prediction is a very important functionality for human-robot collaboration, specifically in accompanying, guiding, or approaching tasks, but also in social robotics, self-driving vehicles, or security systems. In this paper, a novel trajectory prediction model, Social Force Generative Adversarial Network (SoFGAN), is proposed. SoFGAN uses a Generative Adversarial Network (GAN) and Social Force Model (SFM) to generate different plausible people trajectories reducing collisions in a scene. Furthermore, a Conditional Variational Autoencoder (CVAE) module is added to emphasize the destination learning. We show that our method is more accurate in making predictions in UCY or BIWI datasets than most of the current state-of-the-art models and also reduces collisions in comparison to other approaches. Through real-life experiments, we demonstrate that the model can be used in real-time without GPU's to perform good quality predictions with a low computational cost.
Finding the distribution of the velocities and pressures of a fluid (by solving the Navier-Stokes equations) is a principal task in the chemical, energy, and pharmaceutical industries, as well as in mechanical engineering and the design of pipeline systems. With existing solvers, such as OpenFOAM and Ansys, simulations of fluid dynamics in intricate geometries are computationally expensive and require re-simulation whenever the geometric parameters or the initial and boundary conditions are altered. Physics-informed neural networks are a promising tool for simulating fluid flows in complex geometries, as they can adapt to changes in the geometry and mesh definitions, allowing for generalization across different shapes. We present a hybrid quantum physics-informed neural network that simulates laminar fluid flows in 3D Y-shaped mixers. Our approach combines the expressive power of a quantum model with the flexibility of a physics-informed neural network, resulting in a 21% higher accuracy compared to a purely classical neural network. Our findings highlight the potential of machine learning approaches, and in particular hybrid quantum physics-informed neural network, for complex shape optimization tasks in computational fluid dynamics. By improving the accuracy of fluid simulations in complex geometries, our research using hybrid quantum models contributes to the development of more efficient and reliable fluid dynamics solvers.
Learning distance functions between complex objects, such as the Wasserstein distance to compare point sets, is a common goal in machine learning applications. However, functions on such complex objects (e.g., point sets and graphs) are often required to be invariant to a wide variety of group actions e.g. permutation or rigid transformation. Therefore, continuous and symmetric product functions (such as distance functions) on such complex objects must also be invariant to the product of such group actions. We call these functions symmetric and factor-wise group invariant (or SFGI functions in short). In this paper, we first present a general neural network architecture for approximating SFGI functions. The main contribution of this paper combines this general neural network with a sketching idea to develop a specific and efficient neural network which can approximate the $p$-th Wasserstein distance between point sets. Very importantly, the required model complexity is independent of the sizes of input point sets. On the theoretical front, to the best of our knowledge, this is the first result showing that there exists a neural network with the capacity to approximate Wasserstein distance with bounded model complexity. Our work provides an interesting integration of sketching ideas for geometric problems with universal approximation of symmetric functions. On the empirical front, we present a range of results showing that our newly proposed neural network architecture performs comparatively or better than other models (including a SOTA Siamese Autoencoder based approach). In particular, our neural network generalizes significantly better and trains much faster than the SOTA Siamese AE. Finally, this line of investigation could be useful in exploring effective neural network design for solving a broad range of geometric optimization problems (e.g., $k$-means in a metric space).
Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.