Capturing the extremal behaviour of data often requires bespoke marginal and dependence models which are grounded in rigorous asymptotic theory, and hence provide reliable extrapolation into the upper tails of the data-generating distribution. We present a modern toolbox of four methodological frameworks, motivated by modern extreme value theory, that can be used to accurately estimate extreme exceedance probabilities or the corresponding level in either a univariate or multivariate setting. Our frameworks were used to facilitate the winning contribution of Team Yalla to the data competition organised for the 13th International Conference on Extreme Value Analysis (EVA2023). This competition comprised seven teams competing across four separate sub-challenges, with each requiring the modelling of data simulated from known, yet highly complex, statistical distributions, and extrapolation far beyond the range of the available samples in order to predict probabilities of extreme events. Data were constructed to be representative of real environmental data, sampled from the fantasy country of "Utopia".
Monotone missing data is a common problem in data analysis. However, imputation combined with dimensionality reduction can be computationally expensive, especially with the increasing size of datasets. To address this issue, we propose a Blockwise principal component analysis Imputation (BPI) framework for dimensionality reduction and imputation of monotone missing data. The framework conducts Principal Component Analysis (PCA) on the observed part of each monotone block of the data and then imputes on merging the obtained principal components using a chosen imputation technique. BPI can work with various imputation techniques and can significantly reduce imputation time compared to conducting dimensionality reduction after imputation. This makes it a practical and efficient approach for large datasets with monotone missing data. Our experiments validate the improvement in speed. In addition, our experiments also show that while applying MICE imputation directly on missing data may not yield convergence, applying BPI with MICE for the data may lead to convergence.
Defining a successful notion of a multivariate quantile has been an open problem for more than half a century, motivating a plethora of possible solutions. Of these, the approach of [8] and [25] leading to M-quantiles, is very appealing for its mathematical elegance combining elements of convex analysis and probability theory. The key idea is the description of a convex function (the K-function) whose gradient (the K-transform) is in one-to-one correspondence between all of R^d and the unit ball in R^d. By analogy with the d=1 case where the K-transform is a cumulative distribution function-like object (an M-distribution), the fact that its inverse is guaranteed to exist lends itself naturally to providing the basis for the definition of a quantile function for all d>=1. Over the past twenty years the resulting M-quantiles have seen applications in a variety of fields, primarily for the purpose of detecting outliers in multidimensional spaces. In this article we prove that for odd d>=3, it is not the gradient but a poly-Laplacian of the K-function that is (almost everywhere) proportional to the density function. For d even one cannot establish a differential equation connecting the K-function with the density. These results show that usage of the K-transform for outlier detection in higher odd-dimensions is in principle flawed, as the K-transform does not originate from inversion of a true M-distribution. We demonstrate these conclusions in two dimensions through examples from non-standard asymmetric distributions. Our examples illustrate a feature of the K-transform whereby regions in the domain with higher density map to larger volumes in the co-domain, thereby producing a magnification effect that moves inliers closer to the boundary of the co-domain than outliers. This feature obviously disrupts any outlier detection mechanism that relies on the inverse K-transform.
A general theory of efficient estimation for ergodic diffusion processes sampled at high frequency with an infinite time horizon is presented. High frequency sampling is common in many applications, with finance as a prominent example. The theory is formulated in term of approximate martingale estimating functions and covers a large class of estimators including most of the previously proposed estimators for diffusion processes. Easily checked conditions ensuring that an estimating function is an approximate martingale are derived, and general conditions ensuring consistency and asymptotic normality of estimators are given. Most importantly, simple conditions are given that ensure rate optimality and efficiency. Rate optimal estimators of parameters in the diffusion coefficient converge faster than estimators of drift coefficient parameters because they take advantage of the information in the quadratic variation. The conditions facilitate the choice among the multitude of estimators that have been proposed for diffusion models. Optimal martingale estimating functions in the sense of Godambe and Heyde and their high frequency approximations are, under weak conditions, shown to satisfy the conditions for rate optimality and efficiency. This provides a natural feasible method of constructing explicit rate optimal and efficient estimating functions by solving a linear equation.
We consider the problem of sampling from an unknown distribution for which only a sufficiently large number of training samples are available. Such settings have recently drawn considerable interest in the context of generative modelling. In this paper, we propose a generative model combining diffusion maps and Langevin dynamics. Diffusion maps are used to approximate the drift term from the available training samples, which is then implemented in a discrete-time Langevin sampler to generate new samples. By setting the kernel bandwidth to match the time step size used in the unadjusted Langevin algorithm, our method effectively circumvents any stability issues typically associated with time-stepping stiff stochastic differential equations. More precisely, we introduce a novel split-step scheme, ensuring that the generated samples remain within the convex hull of the training samples. Our framework can be naturally extended to generate conditional samples. We demonstrate the performance of our proposed scheme through experiments on synthetic datasets with increasing dimensions and on a stochastic subgrid-scale parametrization conditional sampling problem.
Confounding remains one of the major challenges to causal inference with observational data. This problem is paramount in medicine, where we would like to answer causal questions from large observational datasets like electronic health records (EHRs) and administrative claims. Modern medical data typically contain tens of thousands of covariates. Such a large set carries hope that many of the confounders are directly measured, and further hope that others are indirectly measured through their correlation with measured covariates. How can we exploit these large sets of covariates for causal inference? To help answer this question, this paper examines the performance of the large-scale propensity score (LSPS) approach on causal analysis of medical data. We demonstrate that LSPS may adjust for indirectly measured confounders by including tens of thousands of covariates that may be correlated with them. We present conditions under which LSPS removes bias due to indirectly measured confounders, and we show that LSPS may avoid bias when inadvertently adjusting for variables (like colliders) that otherwise can induce bias. We demonstrate the performance of LSPS with both simulated medical data and real medical data.
We propose a MANOVA test for semicontinuous data that is applicable also when the dimensionality exceeds the sample size. The test statistic is obtained as a likelihood ratio, where numerator and denominator are computed at the maxima of penalized likelihood functions under each hypothesis. Closed form solutions for the regularized estimators allow us to avoid computational overheads. We derive the null distribution using a permutation scheme. The power and level of the resulting test are evaluated in a simulation study. We illustrate the new methodology with two original data analyses, one regarding microRNA expression in human blastocyst cultures, and another regarding alien plant species invasion in the island of Socotra (Yemen).
We develop and compare e-variables for testing whether $k$ samples of data are drawn from the same distribution, the alternative being that they come from different elements of an exponential family. We consider the GRO (growth-rate optimal) e-variables for (1) a `small' null inside the same exponential family, and (2) a `large' nonparametric null, as well as (3) an e-variable arrived at by conditioning on the sum of the sufficient statistics. (2) and (3) are efficiently computable, and extend ideas from Turner et al. [2021] and Wald [1947] respectively from Bernoulli to general exponential families. We provide theoretical and simulation-based comparisons of these e-variables in terms of their logarithmic growth rate, and find that for small effects all four e-variables behave surprisingly similarly; for the Gaussian location and Poisson families, e-variables (1) and (3) coincide; for Bernoulli, (1) and (2) coincide; but in general, whether (2) or (3) grows faster under the alternative is family-dependent. We furthermore discuss algorithms for numerically approximating (1).
One tuple of probability vectors is more informative than another tuple when there exists a single stochastic matrix transforming the probability vectors of the first tuple into the probability vectors of the other. This is called matrix majorization. Solving an open problem raised by Mu et al, we show that if certain monotones - namely multivariate extensions of R\'{e}nyi divergences - are strictly ordered between the two tuples, then for sufficiently large $n$, there exists a stochastic matrix taking the $n$-fold Kronecker power of each input distribution to the $n$-fold Kronecker power of the corresponding output distribution. The same conditions, with non-strict ordering for the monotones, are also necessary for such matrix majorization in large samples. Our result also gives conditions for the existence of a sequence of statistical maps that asymptotically (with vanishing error) convert a single copy of each input distribution to the corresponding output distribution with the help of a catalyst that is returned unchanged. Allowing for transformation with arbitrarily small error, we find conditions that are both necessary and sufficient for such catalytic matrix majorization. We derive our results by building on a general algebraic theory of preordered semirings recently developed by one of the authors. This also allows us to recover various existing results on majorization in large samples and in the catalytic regime as well as relative majorization in a unified manner.
Factor models are widely used in the analysis of high-dimensional data in several fields of research. Estimating a factor model, in particular its covariance matrix, from partially observed data vectors is very challenging. In this work, we show that when the data are structurally incomplete, the factor model likelihood function can be decomposed into the product of the likelihood functions of multiple partial factor models relative to different subsets of data. If these multiple partial factor models are linked together by common parameters, then we can obtain complete maximum likelihood estimates of the factor model parameters and thereby the full covariance matrix. We call this framework Linked Factor Analysis (LINFA). LINFA can be used for covariance matrix completion, dimension reduction, data completion, and graphical dependence structure recovery. We propose an efficient Expectation-Maximization algorithm for maximum likelihood estimation, accelerated by a novel group vertex tessellation (GVT) algorithm which identifies a minimal partition of the vertex set to implement an efficient optimization in the maximization steps. We illustrate our approach in an extensive simulation study and in the analysis of calcium imaging data collected from mouse visual cortex.
Far-field speech recognition is a challenging task that conventionally uses signal processing beamforming to attack noise and interference problem. But the performance has been found usually limited due to heavy reliance on environmental assumption. In this paper, we propose a unified multichannel far-field speech recognition system that combines the neural beamforming and transformer-based Listen, Spell, Attend (LAS) speech recognition system, which extends the end-to-end speech recognition system further to include speech enhancement. Such framework is then jointly trained to optimize the final objective of interest. Specifically, factored complex linear projection (fCLP) has been adopted to form the neural beamforming. Several pooling strategies to combine look directions are then compared in order to find the optimal approach. Moreover, information of the source direction is also integrated in the beamforming to explore the usefulness of source direction as a prior, which is usually available especially in multi-modality scenario. Experiments on different microphone array geometry are conducted to evaluate the robustness against spacing variance of microphone array. Large in-house databases are used to evaluate the effectiveness of the proposed framework and the proposed method achieve 19.26\% improvement when compared with a strong baseline.