亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In a metric space, a set of point sets of roughly the same size and an integer $k\geq 1$ are given as the input and the goal of data-distributed $k$-center is to find a subset of size $k$ of the input points as the set of centers to minimize the maximum distance from the input points to their closest centers. Metric $k$-center is known to be NP-hard which carries to the data-distributed setting. We give a $2$-approximation algorithm of $k$-center for sublinear $k$ in the data-distributed setting, which is tight. This algorithm works in several models, including the massively parallel computation model (MPC).

相關內容

We study optimization problems in a metric space $(\mathcal{X},d)$ where we can compute distances in two ways: via a ''strong'' oracle that returns exact distances $d(x,y)$, and a ''weak'' oracle that returns distances $\tilde{d}(x,y)$ which may be arbitrarily corrupted with some probability. This model captures the increasingly common trade-off between employing both an expensive similarity model (e.g. a large-scale embedding model), and a less accurate but cheaper model. Hence, the goal is to make as few queries to the strong oracle as possible. We consider both so-called ''point queries'', where the strong oracle is queried on a set of points $S \subset \mathcal{X} $ and returns $d(x,y)$ for all $x,y \in S$, and ''edge queries'' where it is queried for individual distances $d(x,y)$. Our main contributions are optimal algorithms and lower bounds for clustering and Minimum Spanning Tree (MST) in this model. For $k$-centers, $k$-median, and $k$-means, we give constant factor approximation algorithms with only $\tilde{O}(k)$ strong oracle point queries, and prove that $\Omega(k)$ queries are required for any bounded approximation. For edge queries, our upper and lower bounds are both $\tilde{\Theta}(k^2)$. Surprisingly, for the MST problem we give a $O(\sqrt{\log n})$ approximation algorithm using no strong oracle queries at all, and a matching $\Omega(\sqrt{\log n})$ lower bound. We empirically evaluate our algorithms, and show that their quality is comparable to that of the baseline algorithms that are given all true distances, but while querying the strong oracle on only a small fraction ($<1\%$) of points.

Given a conjunctive query $Q$ and a database $\mathbf{D}$, a direct access to the answers of $Q$ over $\mathbf{D}$ is the operation of returning, given an index $j$, the $j^{\mathsf{th}}$ answer for some order on its answers. While this problem is $\#\mathsf{P}$-hard in general with respect to combined complexity, many conjunctive queries have an underlying structure that allows for a direct access to their answers for some lexicographical ordering that takes polylogarithmic time in the size of the database after a polynomial time precomputation. Previous work has precisely characterised the tractable classes and given fine-grained lower bounds on the precomputation time needed depending on the structure of the query. In this paper, we generalise these tractability results to the case of signed conjunctive queries, that is, conjunctive queries that may contain negative atoms. Our technique is based on a class of circuits that can represent relational data. We first show that this class supports tractable direct access after a polynomial time preprocessing. We then give bounds on the size of the circuit needed to represent the answer set of signed conjunctive queries depending on their structure. Both results combined together allow us to prove the tractability of direct access for a large class of conjunctive queries. On the one hand, we recover the known tractable classes from the literature in the case of positive conjunctive queries. On the other hand, we generalise and unify known tractability results about negative conjunctive queries -- that is, queries having only negated atoms. In particular, we show that the class of $\beta$-acyclic negative conjunctive queries and the class of bounded nest set width negative conjunctive queries admit tractable direct access.

Scaling laws have been recently employed to derive compute-optimal model size (number of parameters) for a given compute duration. We advance and refine such methods to infer compute-optimal model shapes, such as width and depth, and successfully implement this in vision transformers. Our shape-optimized vision transformer, SoViT, achieves results competitive with models that exceed twice its size, despite being pre-trained with an equivalent amount of compute. For example, SoViT-400m/14 achieves 90.3% fine-tuning accuracy on ILSRCV2012, surpassing the much larger ViT-g/14 and approaching ViT-G/14 under identical settings, with also less than half the inference cost. We conduct a thorough evaluation across multiple tasks, such as image classification, captioning, VQA and zero-shot transfer, demonstrating the effectiveness of our model across a broad range of domains and identifying limitations. Overall, our findings challenge the prevailing approach of blindly scaling up vision models and pave a path for a more informed scaling.

We revisit the moving least squares (MLS) approximation scheme on the sphere $\mathbb S^{d-1} \subset \mathbb R^d$, where $d>1$. It is well known that using the spherical harmonics up to degree $L \in \mathbb N$ as ansatz space yields for functions in $\mathcal C^{L+1}(\mathbb S^{d-1})$ the approximation order $\mathcal O \left( h^{L+1} \right)$, where $h$ denotes the fill distance of the sampling nodes. In this paper we show that the dimension of the ansatz space can be almost halved, by including only spherical harmonics of even or odd degree up to $L$, while preserving the same order of approximation. Numerical experiments indicate that using the reduced ansatz space is essential to ensure the numerical stability of the MLS approximation scheme as $h \to 0$. Finally, we compare our approach with an MLS approximation scheme that uses polynomials on the tangent space as ansatz space.

We prove that a polynomial fraction of the set of $k$-component forests in the $m \times n$ grid graph have equal numbers of vertices in each component. This resolves a conjecture of Charikar, Liu, Liu, and Vuong. It also establishes the first provably polynomial-time algorithm for (exactly or approximately) sampling balanced grid graph partitions according to the spanning tree distribution, which weights each $k$-partition according to the product, across its $k$ pieces, of the number of spanning trees of each piece. Our result has applications to understanding political districtings, where there is an underlying graph of indivisible geographic units that must be partitioned into $k$ population-balanced connected subgraphs. In this setting, tree-weighted partitions have interesting geometric properties, and this has stimulated significant effort to develop methods to sample them.

Cross-encoder models, which jointly encode and score a query-item pair, are prohibitively expensive for direct k-nearest neighbor (k-NN) search. Consequently, k-NN search typically employs a fast approximate retrieval (e.g. using BM25 or dual-encoder vectors), followed by reranking with a cross-encoder; however, the retrieval approximation often has detrimental recall regret. This problem is tackled by ANNCUR (Yadav et al., 2022), a recent work that employs a cross-encoder only, making search efficient using a relatively small number of anchor items, and a CUR matrix factorization. While ANNCUR's one-time selection of anchors tends to approximate the cross-encoder distances on average, doing so forfeits the capacity to accurately estimate distances to items near the query, leading to regret in the crucial end-task: recall of top-k items. In this paper, we propose ADACUR, a method that adaptively, iteratively, and efficiently minimizes the approximation error for the practically important top-k neighbors. It does so by iteratively performing k-NN search using the anchors available so far, then adding these retrieved nearest neighbors to the anchor set for the next round. Empirically, on multiple datasets, in comparison to previous traditional and state-of-the-art methods such as ANNCUR and dual-encoder-based retrieve-and-rerank, our proposed approach ADACUR consistently reduces recall error-by up to 70% on the important k = 1 setting-while using no more compute than its competitors.

A minimal perfect hash function (MPHF) maps a set of n keys to the first n integers without collisions. Representing this bijection needs at least $\log_2(e) \approx 1.443$ bits per key, and there is a wide range of practical implementations achieving about 2 bits per key. Minimal perfect hashing is a key ingredient in many compact data structures such as updatable retrieval data structures and approximate membership data structures. A simple implementation reaching the space lower bound is to sample random hash functions using brute-force, which needs about $e^n \approx 2.718^n$ tries in expectation. ShockHash recently reduced that to about $(e/2)^n \approx 1.359^n$ tries in expectation by sampling random graphs. With bipartite ShockHash, we now sample random bipartite graphs. In this paper, we describe the general algorithmic ideas of bipartite ShockHash and give an experimental evaluation. The key insight is that we can try all combinations of two hash functions, each mapping into one half of the output range. This reduces the number of sampled hash functions to only about $(\sqrt{e/2})^n \approx 1.166^n$ in expectation. In itself, this does not reduce the asymptotic running time much because all combinations still need to be tested. However, by filtering the candidates before combining them, we can reduce this to less than $1.175^n$ combinations in expectation. Our implementation of bipartite ShockHash is up to 3 orders of magnitude faster than original ShockHash. Inside the RecSplit framework, bipartite ShockHash-RS enables significantly larger base cases, leading to a construction that is, depending on the allotted space budget, up to 20 times faster. In our most extreme configuration, ShockHash-RS can build an MPHF for 10 million keys with 1.489 bits per key (within 3.3% of the lower bound) in about half an hour, pushing the limits of what is possible.

Federated clustering is an important part of the field of federated machine learning, that allows multiple data sources to collaboratively cluster their data while keeping it decentralized and preserving privacy. In this paper, we introduce a novel federated clustering algorithm, named Dynamically Weighted Federated k-means (DWF k-means), to address the challenges posed by distributed data sources and heterogeneous data. Our proposed algorithm combines the benefits of traditional clustering techniques with the privacy and scalability advantages of federated learning. It enables multiple data owners to collaboratively cluster their local data while exchanging minimal information with a central coordinator. The algorithm optimizes the clustering process by adaptively aggregating cluster assignments and centroids from each data source, thereby learning a global clustering solution that reflects the collective knowledge of the entire federated network. We conduct experiments on multiple datasets and data distribution settings to evaluate the performance of our algorithm in terms of clustering score, accuracy, and v-measure. The results demonstrate that our approach can match the performance of the centralized classical k-means baseline, and outperform existing federated clustering methods in realistic scenarios.

We consider an equation of multiple variables in which a partial derivative does not vanish at a point. The implicit function theorem provides a local existence and uniqueness of the function for the equation. In this paper, we propose an algorithm to approximate the function by a polynomial without using higher-order differentiability, which depends essentially on integrability. Moreover, we extend the method to a system of equations if the Jacobian determinant does not vanish. This is a robust method for implicit functions that are not differentiable to higher-order. Additionally, we present two numerical experiments to verify the theoretical results.

Posterior sampling, i.e., exponential mechanism to sample from the posterior distribution, provides $\varepsilon$-pure differential privacy (DP) guarantees and does not suffer from potentially unbounded privacy breach introduced by $(\varepsilon,\delta)$-approximate DP. In practice, however, one needs to apply approximate sampling methods such as Markov chain Monte Carlo (MCMC), thus re-introducing the unappealing $\delta$-approximation error into the privacy guarantees. To bridge this gap, we propose the Approximate SAample Perturbation (abbr. ASAP) algorithm which perturbs an MCMC sample with noise proportional to its Wasserstein-infinity ($W_\infty$) distance from a reference distribution that satisfies pure DP or pure Gaussian DP (i.e., $\delta=0$). We then leverage a Metropolis-Hastings algorithm to generate the sample and prove that the algorithm converges in W$_\infty$ distance. We show that by combining our new techniques with a careful localization step, we obtain the first nearly linear-time algorithm that achieves the optimal rates in the DP-ERM problem with strongly convex and smooth losses.

北京阿比特科技有限公司