亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This study presents the outcomes of empirical investigations pertaining to human-vehicle interactions involving an autonomous vehicle equipped with both internal and external Human Machine Interfaces (HMIs) within a crosswalk scenario. The internal and external HMIs were integrated with implicit communication techniques, incorporating a combination of gentle and aggressive braking maneuvers within the crosswalk. Data were collected through a combination of questionnaires and quantifiable metrics, including pedestrian decision to cross related to the vehicle distance and speed. The questionnaire responses reveal that pedestrians experience enhanced safety perceptions when the external HMI and gentle braking maneuvers are used in tandem. In contrast, the measured variables demonstrate that the external HMI proves effective when complemented by the gentle braking maneuver. Furthermore, the questionnaire results highlight that the internal HMI enhances passenger confidence only when paired with the aggressive braking maneuver.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 優化器 · 平滑 · 可行 · 生成方法 ·
2024 年 2 月 2 日

This paper introduces a novel numerical approach to achieving smooth lane-change trajectories in autonomous driving scenarios. Our trajectory generation approach leverages particle swarm optimization (PSO) techniques, incorporating Neural Network (NN) predictions for trajectory refinement. The generation of smooth and dynamically feasible trajectories for the lane change maneuver is facilitated by combining polynomial curve fitting with particle propagation, which can account for vehicle dynamics. The proposed planning algorithm is capable of determining feasible trajectories with real-time computation capability. We conduct comparative analyses with two baseline methods for lane changing, involving analytic solutions and heuristic techniques in numerical simulations. The simulation results validate the efficacy and effectiveness of our proposed approach.

We study an infinite-dimensional optimization problem that aims to identify the Nemytskii operator in the nonlinear part of a prototypical semilinear elliptic partial differential equation (PDE) which minimizes the distance between the PDE-solution and a given desired state. In contrast to previous works, we consider this identification problem in a low-regularity regime in which the function inducing the Nemytskii operator is a-priori only known to be an element of $H^1_{loc}(\mathbb{R})$. This makes the studied problem class a suitable point of departure for the rigorous analysis of training problems for learning-informed PDEs in which an unknown superposition operator is approximated by means of a neural network with nonsmooth activation functions (ReLU, leaky-ReLU, etc.). We establish that, despite the low regularity of the controls, it is possible to derive a classical stationarity system for local minimizers and to solve the considered problem by means of a gradient projection method. The convergence of the resulting algorithm is proven in the function space setting. It is also shown that the established first-order necessary optimality conditions imply that locally optimal superposition operators share various characteristic properties with commonly used activation functions: They are always sigmoidal, continuously differentiable away from the origin, and typically possess a distinct kink at zero. The paper concludes with numerical experiments which confirm the theoretical findings.

This study investigates the possibility of mitigating the demographic biases that affect face recognition technologies through the use of synthetic data. Demographic biases have the potential to impact individuals from specific demographic groups, and can be identified by observing disparate performance of face recognition systems across demographic groups. They primarily arise from the unequal representations of demographic groups in the training data. In recent times, synthetic data have emerged as a solution to some problems that affect face recognition systems. In particular, during the generation process it is possible to specify the desired demographic and facial attributes of images, in order to control the demographic distribution of the synthesized dataset, and fairly represent the different demographic groups. We propose to fine-tune with synthetic data existing face recognition systems that present some demographic biases. We use synthetic datasets generated with GANDiffFace, a novel framework able to synthesize datasets for face recognition with controllable demographic distribution and realistic intra-class variations. We consider multiple datasets representing different demographic groups for training and evaluation. Also, we fine-tune different face recognition systems, and evaluate their demographic fairness with different metrics. Our results support the proposed approach and the use of synthetic data to mitigate demographic biases in face recognition.

To maintain full autonomy, autonomous robotic systems must have the ability to self-repair. Self-repairing via compensatory mechanisms appears in nature: for example, some fish can lose even 76% of their propulsive surface without loss of thrust by altering stroke mechanics. However, direct transference of these alterations from an organism to a robotic flapping propulsor may not be optimal due to irrelevant evolutionary pressures. We instead seek to determine what alterations to stroke mechanics are optimal for a damaged robotic system via artificial evolution. To determine whether natural and machine-learned optima differ, we employ a cyber-physical system using a Covariance Matrix Adaptation Evolutionary Strategy to seek the most efficient trajectory for a given force. We implement an online optimization with hardware-in-the-loop, performing experimental function evaluations with an actuated flexible flat plate. To recoup thrust production following partial amputation, the most efficient learned strategy was to increase amplitude, increase frequency, increase the amplitude of angle of attack, and phase shift the angle of attack by approximately 110 degrees. In fish, only an amplitude increase is reported by majority in the literature. To recoup side-force production, a more challenging optimization landscape is encountered. Nesting of optimal angle of attack traces is found in the resultant-based reference frame, but no clear trend in amplitude or frequency are exhibited -- in contrast to the increase in frequency reported in insect literature. These results suggest that how mechanical flapping propulsors most efficiently adjust to damage of a flapping propulsor may not align with natural swimmers and flyers.

In the last century the automotive industry has arguably transformed society, being one of the most complex, sophisticated and technologically advanced industries, with innovations ranging from hybrid, electric and self-driving smart cars to the development of IoT-connected cars. Due to its complexity, it requires the involvement of many Industry 4.0 technologies, like robotics, advanced manufacturing systems, cyber-physical systems or augmented reality. One of the latest technologies that can benefit the automotive industry is blockchain, which can enhance its data security, privacy, anonymity, traceability, accountability, integrity, robustness, transparency, trustworthiness and authentication, as well as provide long-term sustainability and a higher operational efficiency to the whole industry. This review analyzes the great potential of applying blockchain technologies to the automotive industry emphasizing its cybersecurity features. Thus, the applicability of blockchain is evaluated after examining the state-of-the-art and devising the main stakeholders' current challenges. Furthermore, the article describes the most relevant use cases, since the broad adoption of blockchain unlocks a wide area of short- and medium-term promising automotive applications that can create new business models and even disrupt the car-sharing economy as we know it. Finally, after a Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis, some recommendations are enumerated with the aim of guiding researchers and companies in future cyber-resilient automotive industry developments.

In recent years, autonomous vehicles have attracted the attention of many research groups, both in academia and business, including researchers from leading companies such as Google, Uber and Tesla. This type of vehicles are equipped with systems that are subject to very strict requirements, essentially aimed at performing safe operations -- both for potential passengers and pedestrians -- as well as carrying out the processing needed for decision making in real time. In many instances, general-purpose processors alone cannot ensure that these safety, reliability and real-time requirements are met, so it is common to implement heterogeneous systems by including accelerators. This paper explores the acceleration of a line detection application in the autonomous car environment using a heterogeneous system consisting of a general-purpose RISC-V core and a domain-specific accelerator. In particular, the application is analyzed to identify the most computationally intensive parts of the code and it is adapted accordingly for more efficient processing. Furthermore, the code is executed on the aforementioned hardware platform to verify that the execution effectively meets the existing requirements in autonomous vehicles, experiencing a 3.7x speedup with respect to running without accelerator.

The Tactile Internet paradigm is set to revolutionize human society by enabling skill-set delivery and haptic communication over ultra-reliable, low-latency networks. The emerging sixth-generation (6G) mobile communication systems are envisioned to underpin this Tactile Internet ecosystem at the network edge by providing ubiquitous global connectivity. However, apart from a multitude of opportunities of the Tactile Internet, security and privacy challenges emerge at the forefront. We believe that the recently standardized QUIC protocol, characterized by end-to-end encryption and reduced round-trip delay would serve as the backbone of Tactile Internet. In this article, we envision a futuristic scenario where a QUIC-enabled network uses the underlying 6G communication infrastructure to achieve the requirements for Tactile Internet. Interestingly this requires a deeper investigation of a wide range of security and privacy challenges in QUIC, that need to be mitigated for its adoption in Tactile Internet. Henceforth, this article reviews the existing security and privacy attacks in QUIC and their implication on users. Followed by that, we discuss state-of-the-art attack mitigation strategies and investigate some of their drawbacks with possible directions for future work

Believable proxies of human behavior can empower interactive applications ranging from immersive environments to rehearsal spaces for interpersonal communication to prototyping tools. In this paper, we introduce generative agents--computational software agents that simulate believable human behavior. Generative agents wake up, cook breakfast, and head to work; artists paint, while authors write; they form opinions, notice each other, and initiate conversations; they remember and reflect on days past as they plan the next day. To enable generative agents, we describe an architecture that extends a large language model to store a complete record of the agent's experiences using natural language, synthesize those memories over time into higher-level reflections, and retrieve them dynamically to plan behavior. We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims, where end users can interact with a small town of twenty five agents using natural language. In an evaluation, these generative agents produce believable individual and emergent social behaviors: for example, starting with only a single user-specified notion that one agent wants to throw a Valentine's Day party, the agents autonomously spread invitations to the party over the next two days, make new acquaintances, ask each other out on dates to the party, and coordinate to show up for the party together at the right time. We demonstrate through ablation that the components of our agent architecture--observation, planning, and reflection--each contribute critically to the believability of agent behavior. By fusing large language models with computational, interactive agents, this work introduces architectural and interaction patterns for enabling believable simulations of human behavior.

The rapid development of deep learning has made a great progress in segmentation, one of the fundamental tasks of computer vision. However, the current segmentation algorithms mostly rely on the availability of pixel-level annotations, which are often expensive, tedious, and laborious. To alleviate this burden, the past years have witnessed an increasing attention in building label-efficient, deep-learning-based segmentation algorithms. This paper offers a comprehensive review on label-efficient segmentation methods. To this end, we first develop a taxonomy to organize these methods according to the supervision provided by different types of weak labels (including no supervision, coarse supervision, incomplete supervision and noisy supervision) and supplemented by the types of segmentation problems (including semantic segmentation, instance segmentation and panoptic segmentation). Next, we summarize the existing label-efficient segmentation methods from a unified perspective that discusses an important question: how to bridge the gap between weak supervision and dense prediction -- the current methods are mostly based on heuristic priors, such as cross-pixel similarity, cross-label constraint, cross-view consistency, cross-image relation, etc. Finally, we share our opinions about the future research directions for label-efficient deep segmentation.

Influenced by the stunning success of deep learning in computer vision and language understanding, research in recommendation has shifted to inventing new recommender models based on neural networks. In recent years, we have witnessed significant progress in developing neural recommender models, which generalize and surpass traditional recommender models owing to the strong representation power of neural networks. In this survey paper, we conduct a systematic review on neural recommender models, aiming to summarize the field to facilitate future progress. Distinct from existing surveys that categorize existing methods based on the taxonomy of deep learning techniques, we instead summarize the field from the perspective of recommendation modeling, which could be more instructive to researchers and practitioners working on recommender systems. Specifically, we divide the work into three types based on the data they used for recommendation modeling: 1) collaborative filtering models, which leverage the key source of user-item interaction data; 2) content enriched models, which additionally utilize the side information associated with users and items, like user profile and item knowledge graph; and 3) context enriched models, which account for the contextual information associated with an interaction, such as time, location, and the past interactions. After reviewing representative works for each type, we finally discuss some promising directions in this field, including benchmarking recommender systems, graph reasoning based recommendation models, and explainable and fair recommendations for social good.

北京阿比特科技有限公司