亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Embedding-based neural retrieval is a prevalent approach to address the semantic gap problem which often arises in product search on tail queries. In contrast, popular queries typically lack context and have a broad intent where additional context from users historical interaction can be helpful. In this paper, we share our novel approach to address both: the semantic gap problem followed by an end to end trained model for personalized semantic retrieval. We propose learning a unified embedding model incorporating graph, transformer and term-based embeddings end to end and share our design choices for optimal tradeoff between performance and efficiency. We share our learnings in feature engineering, hard negative sampling strategy, and application of transformer model, including a novel pre-training strategy and other tricks for improving search relevance and deploying such a model at industry scale. Our personalized retrieval model significantly improves the overall search experience, as measured by a 5.58% increase in search purchase rate and a 2.63% increase in site-wide conversion rate, aggregated across multiple A/B tests - on live traffic.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · 變換 · 可辨認的 · Learning ·
2024 年 11 月 4 日

Model editing aims to data-efficiently correct predictive errors of large pre-trained models while ensuring generalization to neighboring failures and locality to minimize unintended effects on unrelated examples. While significant progress has been made in editing Transformer-based large language models, effective strategies for editing vision Transformers (ViTs) in computer vision remain largely untapped. In this paper, we take initial steps towards correcting predictive errors of ViTs, particularly those arising from subpopulation shifts. Taking a locate-then-edit approach, we first address the where-to-edit challenge by meta-learning a hypernetwork on CutMix-augmented data generated for editing reliability. This trained hypernetwork produces generalizable binary masks that identify a sparse subset of structured model parameters, responsive to real-world failure samples. Afterward, we solve the how-to-edit problem by simply fine-tuning the identified parameters using a variant of gradient descent to achieve successful edits. To validate our method, we construct an editing benchmark that introduces subpopulation shifts towards natural underrepresented images and AI-generated images, thereby revealing the limitations of pre-trained ViTs for object recognition. Our approach not only achieves superior performance on the proposed benchmark but also allows for adjustable trade-offs between generalization and locality. Our code is available at //github.com/hustyyq/Where-to-Edit.

As data emerges as a vital driver of technological and economic advancements, a key challenge is accurately quantifying its value in algorithmic decision-making. The Shapley value, a well-established concept from cooperative game theory, has been widely adopted to assess the contribution of individual data sources in supervised machine learning. However, its symmetry axiom assumes all players in the cooperative game are homogeneous, which overlooks the complex structures and dependencies present in real-world datasets. To address this limitation, we extend the traditional data Shapley framework to asymmetric data Shapley, making it flexible enough to incorporate inherent structures within the datasets for structure-aware data valuation. We also introduce an efficient $k$-nearest neighbor-based algorithm for its exact computation. We demonstrate the practical applicability of our framework across various machine learning tasks and data market contexts. The code is available at: //github.com/xzheng01/Asymmetric-Data-Shapley.

Community detection for large networks poses challenges due to the high computational cost as well as heterogeneous community structures. In this paper, we consider widely existing real-world networks with ``grouped communities'' (or ``the group structure''), where nodes within grouped communities are densely connected and nodes across grouped communities are relatively loosely connected. We propose a two-step community detection approach for such networks. Firstly, we leverage modularity optimization methods to partition the network into groups, where between-group connectivity is low. Secondly, we employ the stochastic block model (SBM) or degree-corrected SBM (DCSBM) to further partition the groups into communities, allowing for varying levels of between-community connectivity. By incorporating this two-step structure, we introduce a novel divide-and-conquer algorithm that asymptotically recovers both the group structure and the community structure. Numerical studies confirm that our approach significantly reduces computational costs while achieving competitive performance. This framework provides a comprehensive solution for detecting community structures in networks with grouped communities, offering a valuable tool for various applications.

Motion forecasting is an essential task for autonomous driving, and utilizing information from infrastructure and other vehicles can enhance forecasting capabilities. Existing research mainly focuses on leveraging single-frame cooperative information to enhance the limited perception capability of the ego vehicle, while underutilizing the motion and interaction context of traffic participants observed from cooperative devices. In this paper, we propose a forecasting-oriented representation paradigm to utilize motion and interaction features from cooperative information. Specifically, we present V2X-Graph, a representative framework to achieve interpretable and end-to-end trajectory feature fusion for cooperative motion forecasting. V2X-Graph is evaluated on V2X-Seq in vehicle-to-infrastructure (V2I) scenarios. To further evaluate on vehicle-to-everything (V2X) scenario, we construct the first real-world V2X motion forecasting dataset V2X-Traj, which contains multiple autonomous vehicles and infrastructure in every scenario. Experimental results on both V2X-Seq and V2X-Traj show the advantage of our method. We hope both V2X-Graph and V2X-Traj will benefit the further development of cooperative motion forecasting. Find the project at //github.com/AIR-THU/V2X-Graph.

Local interactions of uncoordinated individuals produce the collective behaviors of many biological systems, inspiring much of the current research in programmable matter. A striking example is the spontaneous assembly of fire ants into "bridges" comprising their own bodies to traverse obstacles and reach sources of food. Experiments and simulations suggest that, remarkably, these ants always form one bridge -- instead of multiple, competing bridges -- despite a lack of central coordination. We argue that the reliable formation of a single bridge does not require sophistication on behalf of the individuals by provably reproducing this behavior in a self-organizing particle system. We show that the formation of a single bridge by the particles is a statistical inevitability of their preferences to move in a particular direction, such as toward a food source, and their preference for more neighbors. Two parameters, $\eta$ and $\beta$, reflect the strengths of these preferences and determine the Gibbs stationary measure of the corresponding particle system's Markov chain dynamics. We show that a single bridge almost certainly forms when $\eta$ and $\beta$ are sufficiently large. Our proof introduces an auxiliary Markov chain, called an "occupancy chain," that captures only the significant, global changes to the system. Through the occupancy chain, we abstract away information about the motion of individual particles, but we gain a more direct means of analyzing their collective behavior. Such abstractions provide a promising new direction for understanding many other systems of programmable matter.

Data leakage is a very common problem that is often overlooked during splitting data into train and test sets before training any ML/DL model. The model performance gets artificially inflated with the presence of data leakage during the evaluation phase which often leads the model to erroneous prediction on real-time deployment. However, detecting the presence of such leakage is challenging, particularly in the object detection context of perception systems where the model needs to be supplied with image data for training. In this study, we conduct a computational experiment on the Cirrus dataset from our industrial partner Volvo Cars to develop a method for detecting data leakage. We then evaluate the method on another public dataset, Kitti, which is a popular and widely accepted benchmark dataset in the automotive domain. The results show that thanks to our proposed method we are able to detect data leakage in the Kitti dataset, which was previously unknown.

This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

北京阿比特科技有限公司