亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Community detection in graphs that are generated according to stochastic block models (SBMs) has received much attention lately. In this paper, we focus on the binary symmetric SBM -- in which a graph of $n$ vertices is randomly generated by first partitioning the vertices into two equal-sized communities and then connecting each pair of vertices with probability that depends on their community memberships -- and study the associated exact community recovery problem. Although the maximum-likelihood formulation of the problem is non-convex and discrete, we propose to tackle it using a popular iterative method called projected power iterations. To ensure fast convergence of the method, we initialize it using a point that is generated by another iterative method called orthogonal iterations, which is a classic method for computing invariant subspaces of a symmetric matrix. We show that in the logarithmic sparsity regime of the problem, with high probability the proposed two-stage method can exactly recover the two communities down to the information-theoretic limit in $\mathcal{O}(n\log^2n/\log\log n)$ time, which is competitive with a host of existing state-of-the-art methods that have the same recovery performance. We also conduct numerical experiments on both synthetic and real data sets to demonstrate the efficacy of our proposed method and complement our theoretical development.

相關內容

We study the hierarchy of communities in real-world networks under a generic stochastic block model, in which the connection probabilities are structured in a binary tree. Under such model, a standard recursive bi-partitioning algorithm is dividing the network into two communities based on the Fiedler vector of the unnormalized graph Laplacian and repeating the split until a stopping rule indicates no further community structures. We prove the strong consistency of this method under a wide range of model parameters, which include sparse networks with node degrees as small as $O(\log n)$. In addition, unlike most of existing work, our theory covers multiscale networks where the connection probabilities may differ by orders of magnitude, which comprise an important class of models that are practically relevant but technically challenging to deal with. Finally we demonstrate the performance of our algorithm on synthetic data and real-world examples.

We study algorithmic problems that belong to the complexity class of the existential theory of the reals (ER). A problem is ER-complete if it is as hard as the problem ETR and if it can be written as an ETR formula. Traditionally, these problems are studied in the real RAM, a model of computation that assumes that the storage and comparison of real-valued numbers can be done in constant space and time, with infinite precision. The complexity class ER is often called a real RAM analogue of NP, since the problem ETR can be viewed as the real-valued variant of SAT. In this paper we prove a real RAM analogue to the Cook-Levin theorem which shows that ER membership is equivalent to having a verification algorithm that runs in polynomial-time on a real RAM. This gives an easy proof of ER-membership, as verification algorithms on a real RAM are much more versatile than ETR-formulas. We use this result to construct a framework to study ER-complete problems under smoothed analysis. We show that for a wide class of ER-complete problems, its witness can be represented with logarithmic input-precision by using smoothed analysis on its real RAM verification algorithm. This shows in a formal way that the boundary between NP and ER (formed by inputs whose solution witness needs high input-precision) consists of contrived input. We apply our framework to well-studied ER-complete recognition problems which have the exponential bit phenomenon such as the recognition of realizable order types or the Steinitz problem in fixed dimension.

The stochastic multi-arm bandit problem has been extensively studied under standard assumptions on the arm's distribution (e.g bounded with known support, exponential family, etc). These assumptions are suitable for many real-world problems but sometimes they require knowledge (on tails for instance) that may not be precisely accessible to the practitioner, raising the question of the robustness of bandit algorithms to model misspecification. In this paper we study a generic Dirichlet Sampling (DS) algorithm, based on pairwise comparisons of empirical indices computed with re-sampling of the arms' observations and a data-dependent exploration bonus. We show that different variants of this strategy achieve provably optimal regret guarantees when the distributions are bounded and logarithmic regret for semi-bounded distributions with a mild quantile condition. We also show that a simple tuning achieve robustness with respect to a large class of unbounded distributions, at the cost of slightly worse than logarithmic asymptotic regret. We finally provide numerical experiments showing the merits of DS in a decision-making problem on synthetic agriculture data.

Stochastic gradient Markov chain Monte Carlo (SGMCMC) is a popular class of algorithms for scalable Bayesian inference. However, these algorithms include hyperparameters such as step size or batch size that influence the accuracy of estimators based on the obtained posterior samples. As a result, these hyperparameters must be tuned by the practitioner and currently no principled and automated way to tune them exists. Standard MCMC tuning methods based on acceptance rates cannot be used for SGMCMC, thus requiring alternative tools and diagnostics. We propose a novel bandit-based algorithm that tunes the SGMCMC hyperparameters by minimizing the Stein discrepancy between the true posterior and its Monte Carlo approximation. We provide theoretical results supporting this approach and assess various Stein-based discrepancies. We support our results with experiments on both simulated and real datasets, and find that this method is practical for a wide range of applications.

As known, the commonly-utilized ways to determine mean first-passage time $\overline{\mathcal{F}}$ for random walk on networks are mainly based on Laplacian spectra. However, methods of this type can become prohibitively complicated and even fail to work when the Laplacian matrix of network under consideration is difficult to describe in the first place. In this paper, we propose an effective approach to determining quantity $\overline{\mathcal{F}}$ on some widely-studied tree networks. To this end, we first build up a general formula between Wiener index $\mathcal{W}$ and $\overline{\mathcal{F}}$ on a tree. This enables us to convert issues to answer into calculation of $\mathcal{W}$ on networks in question. As opposed to most of previous work focusing on deterministic growth trees, our goal is to consider stochastic case. Towards this end, we establish a principled framework where randomness is introduced into the process of growing trees. As an immediate consequence, the previously published results upon deterministic cases are thoroughly covered by formulas established in this paper. Additionally, it is also straightforward to obtain Kirchhoff index on our tree networks using the proposed approach. Most importantly, our approach is more manageable than many other methods including spectral technique in situations considered herein.

We develop an efficient algorithm for weak recovery in a robust version of the stochastic block model. The algorithm matches the statistical guarantees of the best known algorithms for the vanilla version of the stochastic block model. In this sense, our results show that there is no price of robustness in the stochastic block model. Our work is heavily inspired by recent work of Banks, Mohanty, and Raghavendra (SODA 2021) that provided an efficient algorithm for the corresponding distinguishing problem. Our algorithm and its analysis significantly depart from previous ones for robust recovery. A key challenge is the peculiar optimization landscape underlying our algorithm: The planted partition may be far from optimal in the sense that completely unrelated solutions could achieve the same objective value. This phenomenon is related to the push-out effect at the BBP phase transition for PCA. To the best of our knowledge, our algorithm is the first to achieve robust recovery in the presence of such a push-out effect in a non-asymptotic setting. Our algorithm is an instantiation of a framework based on convex optimization (related to but distinct from sum-of-squares), which may be useful for other robust matrix estimation problems. A by-product of our analysis is a general technique that boosts the probability of success (over the randomness of the input) of an arbitrary robust weak-recovery algorithm from constant (or slowly vanishing) probability to exponentially high probability.

We study the problem of learning in the stochastic shortest path (SSP) setting, where an agent seeks to minimize the expected cost accumulated before reaching a goal state. We design a novel model-based algorithm EB-SSP that carefully skews the empirical transitions and perturbs the empirical costs with an exploration bonus to guarantee both optimism and convergence of the associated value iteration scheme. We prove that EB-SSP achieves the minimax regret rate $\widetilde{O}(B_{\star} \sqrt{S A K})$, where $K$ is the number of episodes, $S$ is the number of states, $A$ is the number of actions and $B_{\star}$ bounds the expected cumulative cost of the optimal policy from any state, thus closing the gap with the lower bound. Interestingly, EB-SSP obtains this result while being parameter-free, i.e., it does not require any prior knowledge of $B_{\star}$, nor of $T_{\star}$ which bounds the expected time-to-goal of the optimal policy from any state. Furthermore, we illustrate various cases (e.g., positive costs, or general costs when an order-accurate estimate of $T_{\star}$ is available) where the regret only contains a logarithmic dependence on $T_{\star}$, thus yielding the first horizon-free regret bound beyond the finite-horizon MDP setting.

Graph neural network (GNN) has shown superior performance in dealing with graphs, which has attracted considerable research attention recently. However, most of the existing GNN models are primarily designed for graphs in Euclidean spaces. Recent research has proven that the graph data exhibits non-Euclidean latent anatomy. Unfortunately, there was rarely study of GNN in non-Euclidean settings so far. To bridge this gap, in this paper, we study the GNN with attention mechanism in hyperbolic spaces at the first attempt. The research of hyperbolic GNN has some unique challenges: since the hyperbolic spaces are not vector spaces, the vector operations (e.g., vector addition, subtraction, and scalar multiplication) cannot be carried. To tackle this problem, we employ the gyrovector spaces, which provide an elegant algebraic formalism for hyperbolic geometry, to transform the features in a graph; and then we propose the hyperbolic proximity based attention mechanism to aggregate the features. Moreover, as mathematical operations in hyperbolic spaces could be more complicated than those in Euclidean spaces, we further devise a novel acceleration strategy using logarithmic and exponential mappings to improve the efficiency of our proposed model. The comprehensive experimental results on four real-world datasets demonstrate the performance of our proposed hyperbolic graph attention network model, by comparisons with other state-of-the-art baseline methods.

We study the problem of training deep neural networks with Rectified Linear Unit (ReLU) activiation function using gradient descent and stochastic gradient descent. In particular, we study the binary classification problem and show that for a broad family of loss functions, with proper random weight initialization, both gradient descent and stochastic gradient descent can find the global minima of the training loss for an over-parameterized deep ReLU network, under mild assumption on the training data. The key idea of our proof is that Gaussian random initialization followed by (stochastic) gradient descent produces a sequence of iterates that stay inside a small perturbation region centering around the initial weights, in which the empirical loss function of deep ReLU networks enjoys nice local curvature properties that ensure the global convergence of (stochastic) gradient descent. Our theoretical results shed light on understanding the optimization of deep learning, and pave the way to study the optimization dynamics of training modern deep neural networks.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司