亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study algorithmic problems that belong to the complexity class of the existential theory of the reals (ER). A problem is ER-complete if it is as hard as the problem ETR and if it can be written as an ETR formula. Traditionally, these problems are studied in the real RAM, a model of computation that assumes that the storage and comparison of real-valued numbers can be done in constant space and time, with infinite precision. The complexity class ER is often called a real RAM analogue of NP, since the problem ETR can be viewed as the real-valued variant of SAT. In this paper we prove a real RAM analogue to the Cook-Levin theorem which shows that ER membership is equivalent to having a verification algorithm that runs in polynomial-time on a real RAM. This gives an easy proof of ER-membership, as verification algorithms on a real RAM are much more versatile than ETR-formulas. We use this result to construct a framework to study ER-complete problems under smoothed analysis. We show that for a wide class of ER-complete problems, its witness can be represented with logarithmic input-precision by using smoothed analysis on its real RAM verification algorithm. This shows in a formal way that the boundary between NP and ER (formed by inputs whose solution witness needs high input-precision) consists of contrived input. We apply our framework to well-studied ER-complete recognition problems which have the exponential bit phenomenon such as the recognition of realizable order types or the Steinitz problem in fixed dimension.

相關內容

For a map (function) $F(x):\ftwo^n\rightarrow\ftwo^n$ and a given $y$ in the image of $F$ the problem of \emph{local inversion} of $F$ is to find all inverse images $x$ in $\ftwo^n$ such that $y=F(x)$. In Cryptology, such a problem arises in Cryptanalysis of One way Functions (OWFs). The well known TMTO attack in Cryptanalysis is a probabilistic algorithm for computing one solution of local inversion using $O(\sqrt N)$ order computation in offline as well as online for $N=2^n$. This paper proposes a complete algorithm for solving the local inversion problem which uses linear complexity for a unique solution in a periodic orbit. The algorithm is shown to require an offline computation to solve a hard problem (possibly requiring exponential computation) and an online computation dependent on $y$ that of repeated forward evaluation $F(x)$ on points $x$ in $\ff_{2^n}$ which is polynomial time at each evaluation. However the forward evaluation is repeated at most as many number of times as the Linear Complexity of the sequence $\{y,F(y),\ldots\}$ to get one possible solution when this sequence is periodic. All other solutions are obtained in chains $\{e,F(e),\ldots\}$ for all points $e$ in the Garden of Eden (GOE) of the map $F$. Hence a solution $x$ exists iff either the former sequence is periodic or a solution occurs in a chain starting from a point in GOE. The online computation then turns out to be polynomial time $O(L^k)$ in the linear complexity $L$ of the sequence to compute one possible solution in a periodic orbit or $O(l)$ the chain length for a fixed $n$. Hence this is a complete algorithm for solving the problem of finding all rational solutions $x$ of the equation $F(x)=y$ for a given $y$ and a map $F$ in $\ff_{2^n}$.

In health-pollution cohort studies, accurate predictions of pollutant concentrations at new locations are needed, since the locations of fixed monitoring sites and study participants are often spatially misaligned. For multi-pollution data, principal component analysis (PCA) is often incorporated to obtain low-rank (LR) structure of the data prior to spatial prediction. Recently developed predictive PCA modifies the traditional algorithm to improve the overall predictive performance by leveraging both LR and spatial structures within the data. However, predictive PCA requires complete data or an initial imputation step. Nonparametric imputation techniques without accounting for spatial information may distort the underlying structure of the data, and thus further reduce the predictive performance. We propose a convex optimization problem inspired by the LR matrix completion framework and develop a proximal algorithm to solve it. Missing data are imputed and handled concurrently within the algorithm, which eliminates the necessity of a separate imputation step. We show that our algorithm has low computational burden and leads to reliable predictive performance as the severity of missing data increases.

We study sparse linear regression over a network of agents, modeled as an undirected graph and no server node. The estimation of the $s$-sparse parameter is formulated as a constrained LASSO problem wherein each agent owns a subset of the $N$ total observations. We analyze the convergence rate and statistical guarantees of a distributed projected gradient tracking-based algorithm under high-dimensional scaling, allowing the ambient dimension $d$ to grow with (and possibly exceed) the sample size $N$. Our theory shows that, under standard notions of restricted strong convexity and smoothness of the loss functions, suitable conditions on the network connectivity and algorithm tuning, the distributed algorithm converges globally at a {\it linear} rate to an estimate that is within the centralized {\it statistical precision} of the model, $O(s\log d/N)$. When $s\log d/N=o(1)$, a condition necessary for statistical consistency, an $\varepsilon$-optimal solution is attained after $\mathcal{O}(\kappa \log (1/\varepsilon))$ gradient computations and $O (\kappa/(1-\rho) \log (1/\varepsilon))$ communication rounds, where $\kappa$ is the restricted condition number of the loss function and $\rho$ measures the network connectivity. The computation cost matches that of the centralized projected gradient algorithm despite having data distributed; whereas the communication rounds reduce as the network connectivity improves. Overall, our study reveals interesting connections between statistical efficiency, network connectivity \& topology, and convergence rate in high dimensions.

We discuss a simple, binary tree-based algorithm for the collective allreduce (reduction-to-all, MPI_Allreduce) operation for parallel systems consisting of $p$ suitably interconnected processors. The algorithm can be doubly pipelined to exploit bidirectional (telephone-like) communication capabilities of the communication system. In order to make the algorithm more symmetric, the processors are organized into two rooted trees with communication between the two roots. For each pipeline block, each non-leaf processor takes three communication steps, consisting in receiving and sending from and to the two children, and sending and receiving to and from the root. In a round-based, uniform, linear-cost communication model in which simultaneously sending and receiving $n$ data elements takes time $\alpha+\beta n$ for system dependent constants $\alpha$ (communication start-up latency) and $\beta$ (time per element), the time for the allreduce operation on vectors of $m$ elements is $O(\log p+\sqrt{m\log p})+3\beta m$ by suitable choice of the pipeline block size. We compare the performance of an implementation in MPI to similar reduce followed by broadcast algorithms, and the native MPI_Allreduce collective on a modern, small $36\times 32$ processor cluster. With proper choice of the number of pipeline blocks, it is possible to achieve better performance than pipelined algorithms that do not exploit bidirectional communication.

Let $f$ be a polynomial of degree $d$ in $n$ variables over a finite field $\mathbb{F}$. The polynomial is said to be unbiased if the distribution of $f(x)$ for a uniform input $x \in \mathbb{F}^n$ is close to the uniform distribution over $\mathbb{F}$, and is called biased otherwise. The polynomial is said to have low rank if it can be expressed as a composition of a few lower degree polynomials. Green and Tao [Contrib. Discrete Math 2009] and Kaufman and Lovett [FOCS 2008] showed that bias implies low rank for fixed degree polynomials over fixed prime fields. This lies at the heart of many tools in higher order Fourier analysis. In this work, we extend this result to all prime fields (of size possibly growing with $n$). We also provide a generalization to nonprime fields in the large characteristic case. However, we state all our applications in the prime field setting for the sake of simplicity of presentation. Using the above generalization to large fields as a starting point, we are also able to settle the list decoding radius of fixed degree Reed-Muller codes over growing fields. The case of fixed size fields was solved by Bhowmick and Lovett [STOC 2015], which resolved a conjecture of Gopalan-Klivans-Zuckerman [STOC 2008]. Here, we show that the list decoding radius is equal the minimum distance of the code for all fixed degrees, even when the field size is possibly growing with $n$. Additionally, we effectively resolve the weight distribution problem for Reed-Muller codes of fixed degree over all fields, first raised in 1977 in the classic textbook by MacWilliams and Sloane [Research Problem 15.1 in Theory of Error Correcting Codes].

In this paper, based on results of exact learning, test theory, and rough set theory, we study arbitrary infinite families of concepts each of which consists of an infinite set of elements and an infinite set of subsets of this set called concepts. We consider the notion of a problem over a family of concepts that is described by a finite number of elements: for a given concept, we should recognize which of the elements under consideration belong to this concept. As algorithms for problem solving, we consider decision trees of five types: (i) using membership queries, (ii) using equivalence queries, (iii) using both membership and equivalence queries, (iv) using proper equivalence queries, and (v) using both membership and proper equivalence queries. As time complexity, we study the depth of decision trees. In the worst case, with the growth of the number of elements in the problem description, the minimum depth of decision trees of the first type either grows as a logarithm or linearly, and the minimum depth of decision trees of each of the other types either is bounded from above by a constant or grows as a logarithm, or linearly. The obtained results allow us to distinguish seven complexity classes of infinite families of concepts.

Influence maximization is the task of selecting a small number of seed nodes in a social network to maximize the spread of the influence from these seeds, and it has been widely investigated in the past two decades. In the canonical setting, the whole social network as well as its diffusion parameters is given as input. In this paper, we consider the more realistic sampling setting where the network is unknown and we only have a set of passively observed cascades that record the set of activated nodes at each diffusion step. We study the task of influence maximization from these cascade samples (IMS), and present constant approximation algorithms for this task under mild conditions on the seed set distribution. To achieve the optimization goal, we also provide a novel solution to the network inference problem, that is, learning diffusion parameters and the network structure from the cascade data. Comparing with prior solutions, our network inference algorithm requires weaker assumptions and does not rely on maximum-likelihood estimation and convex programming. Our IMS algorithms enhance the learning-and-then-optimization approach by allowing a constant approximation ratio even when the diffusion parameters are hard to learn, and we do not need any assumption related to the network structure or diffusion parameters.

Transformer-based models are popular for natural language processing (NLP) tasks due to its powerful capacity. As the core component, self-attention module has aroused widespread interests. Attention map visualization of a pre-trained model is one direct method for understanding self-attention mechanism and some common patterns are observed in visualization. Based on these patterns, a series of efficient transformers are proposed with corresponding sparse attention masks. Besides above empirical results, universal approximability of Transformer-based models is also discovered from a theoretical perspective. However, above understanding and analysis of self-attention is based on a pre-trained model. To rethink the importance analysis in self-attention, we delve into dynamics of attention matrix importance during pre-training. One of surprising results is that the diagonal elements in the attention map are the most unimportant compared with other attention positions and we also provide a proof to show these elements can be removed without damaging the model performance. Furthermore, we propose a Differentiable Attention Mask (DAM) algorithm, which can be also applied in guidance of SparseBERT design further. The extensive experiments verify our interesting findings and illustrate the effect of our proposed algorithm.

The problem of Approximate Nearest Neighbor (ANN) search is fundamental in computer science and has benefited from significant progress in the past couple of decades. However, most work has been devoted to pointsets whereas complex shapes have not been sufficiently treated. Here, we focus on distance functions between discretized curves in Euclidean space: they appear in a wide range of applications, from road segments to time-series in general dimension. For $\ell_p$-products of Euclidean metrics, for any $p$, we design simple and efficient data structures for ANN, based on randomized projections, which are of independent interest. They serve to solve proximity problems under a notion of distance between discretized curves, which generalizes both discrete Fr\'echet and Dynamic Time Warping distances. These are the most popular and practical approaches to comparing such curves. We offer the first data structures and query algorithms for ANN with arbitrarily good approximation factor, at the expense of increasing space usage and preprocessing time over existing methods. Query time complexity is comparable or significantly improved by our algorithms, our algorithm is especially efficient when the length of the curves is bounded.

Visual question answering requires high-order reasoning about an image, which is a fundamental capability needed by machine systems to follow complex directives. Recently, modular networks have been shown to be an effective framework for performing visual reasoning tasks. While modular networks were initially designed with a degree of model transparency, their performance on complex visual reasoning benchmarks was lacking. Current state-of-the-art approaches do not provide an effective mechanism for understanding the reasoning process. In this paper, we close the performance gap between interpretable models and state-of-the-art visual reasoning methods. We propose a set of visual-reasoning primitives which, when composed, manifest as a model capable of performing complex reasoning tasks in an explicitly-interpretable manner. The fidelity and interpretability of the primitives' outputs enable an unparalleled ability to diagnose the strengths and weaknesses of the resulting model. Critically, we show that these primitives are highly performant, achieving state-of-the-art accuracy of 99.1% on the CLEVR dataset. We also show that our model is able to effectively learn generalized representations when provided a small amount of data containing novel object attributes. Using the CoGenT generalization task, we show more than a 20 percentage point improvement over the current state of the art.

北京阿比特科技有限公司