亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cryptographic key exchange protocols traditionally rely on computational conjectures such as the hardness of prime factorisation to provide security against eavesdropping attacks. Remarkably, quantum key distribution protocols like the one proposed by Bennett and Brassard provide information-theoretic security against such attacks, a much stronger form of security unreachable by classical means. However, quantum protocols realised so far are subject to a new class of attacks exploiting implementation defects in the physical devices involved, as demonstrated in numerous ingenious experiments. Following the pioneering work of Ekert proposing the use of entanglement to bound an adversary's information from Bell's theorem, we present here the experimental realisation of a complete quantum key distribution protocol immune to these vulnerabilities. We achieve this by combining theoretical developments on finite-statistics analysis, error correction, and privacy amplification, with an event-ready scheme enabling the rapid generation of high-fidelity entanglement between two trapped-ion qubits connected by an optical fibre link. The secrecy of our key is guaranteed device-independently: it is based on the validity of quantum theory, and certified by measurement statistics observed during the experiment. Our result shows that provably secure cryptography with real-world devices is possible, and paves the way for further quantum information applications based on the device-independence principle.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 線性組合 · 優化器 · 代價 · 奇異的 ·
2023 年 10 月 23 日

We propose a simple method for simulating a general class of non-unitary dynamics as a linear combination of Hamiltonian simulation (LCHS) problems. LCHS does not rely on converting the problem into a dilated linear system problem, or on the spectral mapping theorem. The latter is the mathematical foundation of many quantum algorithms for solving a wide variety of tasks involving non-unitary processes, such as the quantum singular value transformation (QSVT). The LCHS method can achieve optimal cost in terms of state preparation. We also demonstrate an application for open quantum dynamics simulation using the complex absorbing potential method with near-optimal dependence on all parameters.

We develop a provably efficient importance sampling scheme that estimates exit probabilities of solutions to small-noise stochastic reaction-diffusion equations from scaled neighborhoods of a stable equilibrium. The moderate deviation scaling allows for a local approximation of the nonlinear dynamics by their linearized version. In addition, we identify a finite-dimensional subspace where exits take place with high probability. Using stochastic control and variational methods we show that our scheme performs well both in the zero noise limit and pre-asymptotically. Simulation studies for stochastically perturbed bistable dynamics illustrate the theoretical results.

Obtaining the solutions of partial differential equations based on machine learning methods has drawn more and more attention in the fields of scientific computation and engineering applications. In this work, we first propose a coupled Extreme Learning Machine(called CELM) method incorporated with the physical laws to solve a class of fourth-order biharmonic equations by reformulating it into two well-posed Poisson problems. In addition, some activation functions including tangent, gaussian, sine, and trigonometric functions are introduced to assess our CELM method. Furthermore, we introduce several activation functions, such as tangent, Gaussian, sine, and trigonometric functions, to evaluate the performance of our CELM method. Notably, the sine and trigonometric functions demonstrate a remarkable ability to effectively minimize the approximation error of the CELM model. In the end, several numerical experiments are performed to study the initializing ways for both the weights and biases of the hidden units in our CELM model and explore the required number of hidden units. Numerical results show the proposed CELM algorithm is high-precision and efficient to address the biharmonic equations on both regular and irregular domains.

In this paper we propose a variant of enriched Galerkin methods for second order elliptic equations with over-penalization of interior jump terms. The bilinear form with interior over-penalization gives a non-standard norm which is different from the discrete energy norm in the classical discontinuous Galerkin methods. Nonetheless we prove that optimal a priori error estimates with the standard discrete energy norm can be obtained by combining a priori and a posteriori error analysis techniques. We also show that the interior over-penalization is advantageous for constructing preconditioners robust to mesh refinement by analyzing spectral equivalence of bilinear forms. Numerical results are included to illustrate the convergence and preconditioning results.

Symmetry is a cornerstone of much of mathematics, and many probability distributions possess symmetries characterized by their invariance to a collection of group actions. Thus, many mathematical and statistical methods rely on such symmetry holding and ostensibly fail if symmetry is broken. This work considers under what conditions a sequence of probability measures asymptotically gains such symmetry or invariance to a collection of group actions. Considering the many symmetries of the Gaussian distribution, this work effectively proposes a non-parametric type of central limit theorem. That is, a Lipschitz function of a high dimensional random vector will be asymptotically invariant to the actions of certain compact topological groups. Applications of this include a partial law of the iterated logarithm for uniformly random points in an $\ell_p^n$-ball and an asymptotic equivalence between classical parametric statistical tests and their randomization counterparts even when invariance assumptions are violated.

A new mechanical model on noncircular shallow tunnelling considering initial stress field is proposed in this paper by constraining far-field ground surface to eliminate displacement singularity at infinity, and the originally unbalanced tunnel excavation problem in existing solutions is turned to an equilibrium one of mixed boundaries. By applying analytic continuation, the mixed boundaries are transformed to a homogenerous Riemann-Hilbert problem, which is subsequently solved via an efficient and accurate iterative method with boundary conditions of static equilibrium, displacement single-valuedness, and traction along tunnel periphery. The Lanczos filtering technique is used in the final stress and displacement solution to reduce the Gibbs phenomena caused by the constrained far-field ground surface for more accurte results. Several numerical cases are conducted to intensively verify the proposed solution by examining boundary conditions and comparing with existing solutions, and all the results are in good agreements. Then more numerical cases are conducted to investigate the stress and deformation distribution along ground surface and tunnel periphery, and several engineering advices are given. Further discussions on the defects of the proposed solution are also conducted for objectivity.

Differential geometric approaches are ubiquitous in several fields of mathematics, physics and engineering, and their discretizations enable the development of network-based mathematical and computational frameworks, which are essential for large-scale data science. The Forman-Ricci curvature (FRC) - a statistical measure based on Riemannian geometry and designed for networks - is known for its high capacity for extracting geometric information from complex networks. However, extracting information from dense networks is still challenging due to the combinatorial explosion of high-order network structures. Motivated by this challenge we sought a set-theoretic representation theory for high-order network cells and FRC, as well as their associated concepts and properties, which together provide an alternative and efficient formulation for computing high-order FRC in complex networks. We provide a pseudo-code, a software implementation coined FastForman, as well as a benchmark comparison with alternative implementations. Crucially, our representation theory reveals previous computational bottlenecks and also accelerates the computation of FRC. As a consequence, our findings open new research possibilities in complex systems where higher-order geometric computations are required.

Rational function approximations provide a simple but flexible alternative to polynomial approximation, allowing one to capture complex non-linearities without oscillatory artifacts. However, there have been few attempts to use rational functions on noisy data due to the likelihood of creating spurious singularities. To avoid the creation of singularities, we use Bernstein polynomials and appropriate conditions on their coefficients to force the denominator to be strictly positive. While this reduces the range of rational polynomials that can be expressed, it keeps all the benefits of rational functions while maintaining the robustness of polynomial approximation in noisy data scenarios. Our numerical experiments on noisy data show that existing rational approximation methods continually produce spurious poles inside the approximation domain. This contrasts our method, which cannot create poles in the approximation domain and provides better fits than a polynomial approximation and even penalized splines on functions with multiple variables. Moreover, guaranteeing pole-free in an interval is critical for estimating non-constant coefficients when numerically solving differential equations using spectral methods. This provides a compact representation of the original differential equation, allowing numeric solvers to achieve high accuracy quickly, as seen in our experiments.

The equioscillation theorem interleaves the Haar condition, the existence and uniqueness and strong uniqueness of the optimal Chebyshev approximation and its characterization by the equioscillation condition in a way that cannot extend to multivariate approximation: Rice~[\emph{Transaction of the AMS}, 1963] says ''A form of alternation is still present for functions of several variables. However, there is apparently no simple method of distinguishing between the alternation of a best approximation and the alternation of other approximating functions. This is due to the fact that there is no natural ordering of the critical points.'' In addition, in the context of multivariate approximation the Haar condition is typically not satisfied and strong uniqueness may hold or not. The present paper proposes an multivariate equioscillation theorem, which includes such a simple alternation condition on error extrema, existence and a sufficient condition for strong uniqueness. To this end, the relationship between the properties interleaved in the univariate equioscillation theorem is clarified: first, a weak Haar condition is proposed, which simply implies existence. Second, the equioscillation condition is shown to be equivalent to the optimality condition of convex optimization, hence characterizing optimality independently from uniqueness. It is reformulated as the synchronized oscillations between the error extrema and the components of a related Haar matrix kernel vector, in a way that applies to multivariate approximation. Third, an additional requirement on the involved Haar matrix and its kernel vector, called strong equioscillation, is proved to be sufficient for the strong uniqueness of the solution. These three disconnected conditions give rise to a multivariate equioscillation theorem, where existence, characterization by equioscillation and strong uniqueness are separated, without involving the too restrictive Haar condition. Remarkably, relying on optimality condition of convex optimization gives rise to a quite simple proof. Instances of multivariate problems with strongly unique, non-strong but unique and non-unique solutions are presented to illustrate the scope of the theorem.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

北京阿比特科技有限公司