亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Image-caption pretraining has been quite successfully used for downstream vision tasks like zero-shot image classification and object detection. However, image-caption pretraining is still a hard problem -- it requires multiple concepts (nouns) from captions to be aligned to several objects in images. To tackle this problem, we go to the roots -- the best learner, children. We take inspiration from cognitive science studies dealing with children's language learning to propose a curriculum learning framework. The learning begins with easy-to-align image caption pairs containing one concept per caption. The difficulty is progressively increased with each new phase by adding one more concept per caption. Correspondingly, the knowledge acquired in each learning phase is utilized in subsequent phases to effectively constrain the learning problem to aligning one new concept-object pair in each phase. We show that this learning strategy improves over vanilla image-caption training in various settings -- pretraining from scratch, using a pretrained image or/and pretrained text encoder, low data regime etc.

相關內容

A curriculum is a planned sequence of learning materials and an effective one can make learning efficient and effective for both humans and machines. Recent studies developed effective data-driven curriculum learning approaches for training graph neural networks in language applications. However, existing curriculum learning approaches often employ a single criterion of difficulty in their training paradigms. In this paper, we propose a new perspective on curriculum learning by introducing a novel approach that builds on graph complexity formalisms (as difficulty criteria) and model competence during training. The model consists of a scheduling scheme which derives effective curricula by accounting for different views of sample difficulty and model competence during training. The proposed solution advances existing research in curriculum learning for graph neural networks with the ability to incorporate a fine-grained spectrum of graph difficulty criteria in their training paradigms. Experimental results on real-world link prediction and node classification tasks illustrate the effectiveness of the proposed approach.

Autism, also known as Autism Spectrum Disorder (or ASD), is a neurological disorder. Its main symptoms include difficulty in (verbal and/or non-verbal) communication, and rigid/repetitive behavior. These symptoms are often indistinguishable from a normal (control) individual, due to which this disorder remains undiagnosed in early childhood leading to delayed treatment. Since the learning curve is steep during the initial age, an early diagnosis of autism could allow to take adequate interventions at the right time, which might positively affect the growth of an autistic child. Further, the traditional methods of autism diagnosis require multiple visits to a specialized psychiatrist, however this process can be time-consuming. In this paper, we present a learning based approach to automate autism diagnosis using simple and small action video clips of subjects. This task is particularly challenging because the amount of annotated data available is small, and the variations among samples from the two categories (ASD and control) are generally indistinguishable. This is also evident from poor performance of a binary classifier learned using the cross-entropy loss on top of a baseline encoder. To address this, we adopt contrastive feature learning in both self supervised and supervised learning frameworks, and show that these can lead to a significant increase in the prediction accuracy of a binary classifier on this task. We further validate this by conducting thorough experimental analyses under different set-ups on two publicly available datasets.

Contrastive Language-Image Pre-training (CLIP) has emerged as a simple yet effective way to train large-scale vision-language models. CLIP demonstrates impressive zero-shot classification and retrieval on diverse downstream tasks. However, to leverage its full potential, fine-tuning still appears to be necessary. Fine-tuning the entire CLIP model can be resource-intensive and unstable. Moreover, recent methods that aim to circumvent this need for fine-tuning still require access to images from the target distribution. In this paper, we pursue a different approach and explore the regime of training-free "name-only transfer" in which the only knowledge we possess about the downstream task comprises the names of downstream target categories. We propose a novel method, SuS-X, consisting of two key building blocks -- SuS and TIP-X, that requires neither intensive fine-tuning nor costly labelled data. SuS-X achieves state-of-the-art zero-shot classification results on 19 benchmark datasets. We further show the utility of TIP-X in the training-free few-shot setting, where we again achieve state-of-the-art results over strong training-free baselines. Code is available at //github.com/vishaal27/SuS-X.

Generative Adversarial Networks (GANs) and their variants have achieved remarkable success on natural images. However, their performance degrades when applied to remote sensing (RS) images, and the discriminator often suffers from the overfitting problem. In this paper, we examine the differences between natural and RS images and find that the intrinsic dimensions of RS images are much lower than those of natural images. As the discriminator is more susceptible to overfitting on data with lower intrinsic dimension, it focuses excessively on local characteristics of RS training data and disregards the overall structure of the distribution, leading to a faulty generation model. In respond, we propose a novel approach that leverages the real data manifold to constrain the discriminator and enhance the model performance. Specifically, we introduce a learnable information-theoretic measure to capture the real data manifold. Building upon this measure, we propose manifold alignment regularization, which mitigates the discriminator's overfitting and improves the quality of generated samples. Moreover, we establish a unified GAN framework for manifold alignment, applicable to both supervised and unsupervised RS image generation tasks.

Large language models (LLMs), such as GPT-3 and ChatGPT, have demonstrated remarkable results in various natural language processing (NLP) tasks with in-context learning, which involves inference based on a few demonstration examples. Despite their successes in NLP tasks, no investigation has been conducted to assess the ability of LLMs to perform document information extraction (DIE) using in-context learning. Applying LLMs to DIE poses two challenges: the modality and task gap. To this end, we propose a simple but effective in-context learning framework called ICL-D3IE, which enables LLMs to perform DIE with different types of demonstration examples. Specifically, we extract the most difficult and distinct segments from hard training documents as hard demonstrations for benefiting all test instances. We design demonstrations describing relationships that enable LLMs to understand positional relationships. We introduce formatting demonstrations for easy answer extraction. Additionally, the framework improves diverse demonstrations by updating them iteratively. Our experiments on three widely used benchmark datasets demonstrate that the ICL-D3IE framework enables GPT-3/ChatGPT to achieve superior performance when compared to previous pre-trained methods fine-tuned with full training in both the in-distribution (ID) setting and in the out-of-distribution (OOD) setting.

Due to their significance in human communication, the automatic generation of co-speech gestures in artificial embodied agents has received a lot of attention. Although modern deep learning approaches can generate realistic-looking conversational gestures from spoken language, they often lack the ability to convey meaningful information and generate contextually appropriate gestures. This paper presents an augmented approach to the generation of co-speech gestures that additionally takes into account given form and meaning features for the gestures. Our framework effectively acquires this information from a small corpus with rich semantic annotations and a larger corpus without such information. We provide an analysis of the effects of distinctive feature targets and we report on a human rater evaluation study demonstrating that our framework achieves semantic coherence and person perception on the same level as human ground truth behavior. We make our data pipeline and the generation framework publicly available.

Training machine learning models in a meaningful order, from the easy samples to the hard ones, using curriculum learning can provide performance improvements over the standard training approach based on random data shuffling, without any additional computational costs. Curriculum learning strategies have been successfully employed in all areas of machine learning, in a wide range of tasks. However, the necessity of finding a way to rank the samples from easy to hard, as well as the right pacing function for introducing more difficult data can limit the usage of the curriculum approaches. In this survey, we show how these limits have been tackled in the literature, and we present different curriculum learning instantiations for various tasks in machine learning. We construct a multi-perspective taxonomy of curriculum learning approaches by hand, considering various classification criteria. We further build a hierarchical tree of curriculum learning methods using an agglomerative clustering algorithm, linking the discovered clusters with our taxonomy. At the end, we provide some interesting directions for future work.

The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in response to a query. Although the most common formulation of text ranking is search, instances of the task can also be found in many natural language processing applications. This survey provides an overview of text ranking with neural network architectures known as transformers, of which BERT is the best-known example. The combination of transformers and self-supervised pretraining has, without exaggeration, revolutionized the fields of natural language processing (NLP), information retrieval (IR), and beyond. In this survey, we provide a synthesis of existing work as a single point of entry for practitioners who wish to gain a better understanding of how to apply transformers to text ranking problems and researchers who wish to pursue work in this area. We cover a wide range of modern techniques, grouped into two high-level categories: transformer models that perform reranking in multi-stage ranking architectures and learned dense representations that attempt to perform ranking directly. There are two themes that pervade our survey: techniques for handling long documents, beyond the typical sentence-by-sentence processing approaches used in NLP, and techniques for addressing the tradeoff between effectiveness (result quality) and efficiency (query latency). Although transformer architectures and pretraining techniques are recent innovations, many aspects of how they are applied to text ranking are relatively well understood and represent mature techniques. However, there remain many open research questions, and thus in addition to laying out the foundations of pretrained transformers for text ranking, this survey also attempts to prognosticate where the field is heading.

Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback. Despite many advances over the past three decades, learning in many domains still requires a large amount of interaction with the environment, which can be prohibitively expensive in realistic scenarios. To address this problem, transfer learning has been applied to reinforcement learning such that experience gained in one task can be leveraged when starting to learn the next, harder task. More recently, several lines of research have explored how tasks, or data samples themselves, can be sequenced into a curriculum for the purpose of learning a problem that may otherwise be too difficult to learn from scratch. In this article, we present a framework for curriculum learning (CL) in reinforcement learning, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals. Finally, we use our framework to find open problems and suggest directions for future RL curriculum learning research.

Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. As the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Different from previous surveys, this survey paper reviews over forty representative transfer learning approaches from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.

北京阿比特科技有限公司