亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Few-shot learning allows pre-trained language models to adapt to downstream tasks while using a limited number of training examples. However, practical applications are limited when all model parameters must be optimized. In this work we apply a new technique for parameter efficient few shot learning while adopting a strict definition of parameter efficiency. Our training method combines 1) intermediate training by reformulating natural language tasks as entailment tasks \cite{wang_entailment_2021} and 2) differentiable optimization of template and label tokens \cite{zhang_differentiable_2021}. We quantify the tradeoff between parameter efficiency and performance in the few-shot regime and propose a simple model agnostic approach that can be extended to any task By achieving competitive performance while only optimizing 3\% of a model's parameters and allowing for batched inference, we allow for more efficient practical deployment of models.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Backbone · MoDELS · 原點 · 樣例 ·
2023 年 3 月 22 日

The superior performance of modern deep networks usually comes with a costly training procedure. This paper presents a new curriculum learning approach for the efficient training of visual backbones (e.g., vision Transformers). Our work is inspired by the inherent learning dynamics of deep networks: we experimentally show that at an earlier training stage, the model mainly learns to recognize some 'easier-to-learn' discriminative patterns within each example, e.g., the lower-frequency components of images and the original information before data augmentation. Driven by this phenomenon, we propose a curriculum where the model always leverages all the training data at each epoch, while the curriculum starts with only exposing the 'easier-to-learn' patterns of each example, and introduces gradually more difficult patterns. To implement this idea, we 1) introduce a cropping operation in the Fourier spectrum of the inputs, which enables the model to learn from only the lower-frequency components efficiently, 2) demonstrate that exposing the features of original images amounts to adopting weaker data augmentation, and 3) integrate 1) and 2) and design a curriculum learning schedule with a greedy-search algorithm. The resulting approach, EfficientTrain, is simple, general, yet surprisingly effective. In the absence of hyper-parameter tuning, it reduces the training wall-time of a wide variety of popular models (e.g., ResNet, ConvNeXt, DeiT, PVT, Swin, and CSWin) by >1.5x on ImageNet-1K/22K without sacrificing the accuracy. It is also effective for self-supervised learning (e.g., MAE). Code is available at //github.com/LeapLabTHU/EfficientTrain.

Contrastive vision-language models (e.g. CLIP) are typically created by updating all the parameters of a vision model and language model through contrastive training. Can such models be created by a small number of parameter updates to an already-trained language model and vision model? The literature describes techniques that can create vision-language models by updating a small number of parameters in a language model, but these require already aligned visual representations and are non-contrastive, hence unusable for latency-sensitive applications such as neural search. We explore the feasibility and benefits of parameter-efficient contrastive vision-language alignment through transfer learning: creating a model such as CLIP by minimally updating an already-trained vision and language model. We find that a minimal set of parameter updates ($<$7%) can achieve the same performance as full-model training, and updating specific components ($<$1% of parameters) can match 75% of full-model training. We describe a series of experiments: we show that existing knowledge is conserved more strongly in parameter-efficient training and that parameter-efficient scaling scales with model and dataset size. Where paired-image text data is scarce but strong multilingual language models exist (e.g. low resource languages), parameter-efficient training is even preferable to full-model training. Given a fixed compute budget, parameter-efficient training allows training larger models on the same hardware, achieving equivalent performance in less time. Parameter-efficient training hence constitutes an energy-efficient and effective training strategy for contrastive vision-language models that may be preferable to the full-model training paradigm for common use cases. Code and weights at //github.com/codezakh/LilT.

Simultaneous machine translation, which aims at a real-time translation, is useful in many live scenarios but very challenging due to the trade-off between accuracy and latency. To achieve the balance for both, the model needs to wait for appropriate streaming text (READ policy) and then generates its translation (WRITE policy). However, WRITE policies of previous work either are specific to the method itself due to the end-to-end training or suffer from the input mismatch between training and decoding for the non-end-to-end training. Therefore, it is essential to learn a generic and better WRITE policy for simultaneous machine translation. Inspired by strategies utilized by human interpreters and "wait" policies, we propose a novel adaptive prefix-to-prefix training policy called LEAPT, which allows our machine translation model to learn how to translate source sentence prefixes and make use of the future context. Experiments show that our proposed methods greatly outperform competitive baselines and achieve promising results.

Large Language Models (LLMs) have so far impressed the world, with unprecedented capabilities that emerge in models at large scales. On the vision side, transformer models (i.e., ViT) are following the same trend, achieving the best performance on challenging benchmarks. With the abundance of such unimodal models, a natural question arises; do we need also to follow this trend to tackle multimodal tasks? In this work, we propose to rather direct effort to efficient adaptations of existing models, and propose to augment Language Models with perception. Existing approaches for adapting pretrained models for vision-language tasks still rely on several key components that hinder their efficiency. In particular, they still train a large number of parameters, rely on large multimodal pretraining, use encoders (e.g., CLIP) trained on huge image-text datasets, and add significant inference overhead. In addition, most of these approaches have focused on Zero-Shot and In Context Learning, with little to no effort on direct finetuning. We investigate the minimal computational effort needed to adapt unimodal models for multimodal tasks and propose a new challenging setup, alongside different approaches, that efficiently adapts unimodal pretrained models. We show that by freezing more than 99\% of total parameters, training only one linear projection layer, and prepending only one trainable token, our approach (dubbed eP-ALM) significantly outperforms other baselines on VQA and Captioning across Image, Video, and Audio modalities, following the proposed setup. The code will be available here: //github.com/mshukor/eP-ALM.

Diffusion models have achieved remarkable success in text-to-image generation, enabling the creation of high-quality images from text prompts or other modalities. However, existing methods for customizing these models are limited by handling multiple personalized subjects and the risk of overfitting. Moreover, their large number of parameters is inefficient for model storage. In this paper, we propose a novel approach to address these limitations in existing text-to-image diffusion models for personalization. Our method involves fine-tuning the singular values of the weight matrices, leading to a compact and efficient parameter space that reduces the risk of overfitting and language-drifting. We also propose a Cut-Mix-Unmix data-augmentation technique to enhance the quality of multi-subject image generation and a simple text-based image editing framework. Our proposed SVDiff method has a significantly smaller model size (1.7MB for StableDiffusion) compared to existing methods (vanilla DreamBooth 3.66GB, Custom Diffusion 73MB), making it more practical for real-world applications.

Conversations among online users sometimes derail, i.e., break down into personal attacks. Such derailment has a negative impact on the healthy growth of cyberspace communities. The ability to predict whether ongoing conversations are likely to derail could provide valuable real-time insight to interlocutors and moderators. Prior approaches predict conversation derailment retrospectively without the ability to forestall the derailment proactively. Some works attempt to make dynamic prediction as the conversation develops, but fail to incorporate multisource information, such as conversation structure and distance to derailment. We propose a hierarchical transformer-based framework that combines utterance-level and conversation-level information to capture fine-grained contextual semantics. We propose a domain-adaptive pretraining objective to integrate conversational structure information and a multitask learning scheme to leverage the distance from each utterance to derailment. An evaluation of our framework on two conversation derailment datasets yields improvement over F1 score for the prediction of derailment. These results demonstrate the effectiveness of incorporating multisource information.

Fine-tuning large pre-trained language models on downstream tasks has become an important paradigm in NLP. However, common practice fine-tunes all of the parameters in a pre-trained model, which becomes prohibitive when a large number of downstream tasks are present. Therefore, many fine-tuning methods are proposed to learn incremental updates of pre-trained weights in a parameter efficient way, e.g., low-rank increments. These methods often evenly distribute the budget of incremental updates across all pre-trained weight matrices, and overlook the varying importance of different weight parameters. As a consequence, the fine-tuning performance is suboptimal. To bridge this gap, we propose AdaLoRA, which adaptively allocates the parameter budget among weight matrices according to their importance score. In particular, AdaLoRA parameterizes the incremental updates in the form of singular value decomposition. Such a novel approach allows us to effectively prune the singular values of unimportant updates, which is essentially to reduce their parameter budget but circumvent intensive exact SVD computations. We conduct extensive experiments with several pre-trained models on natural language processing, question answering, and natural language generation to validate the effectiveness of AdaLoRA. Results demonstrate that AdaLoRA manifests notable improvement over baselines, especially in the low budget settings. Our code is publicly available at //github.com/QingruZhang/AdaLoRA .

Classic algorithms and machine learning systems like neural networks are both abundant in everyday life. While classic computer science algorithms are suitable for precise execution of exactly defined tasks such as finding the shortest path in a large graph, neural networks allow learning from data to predict the most likely answer in more complex tasks such as image classification, which cannot be reduced to an exact algorithm. To get the best of both worlds, this thesis explores combining both concepts leading to more robust, better performing, more interpretable, more computationally efficient, and more data efficient architectures. The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm. When integrating an algorithm into a neural architecture, it is important that the algorithm is differentiable such that the architecture can be trained end-to-end and gradients can be propagated back through the algorithm in a meaningful way. To make algorithms differentiable, this thesis proposes a general method for continuously relaxing algorithms by perturbing variables and approximating the expectation value in closed form, i.e., without sampling. In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable renderers, and differentiable logic gate networks. Finally, this thesis presents alternative training strategies for learning with algorithms.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

Few-shot learning aims to learn novel categories from very few samples given some base categories with sufficient training samples. The main challenge of this task is the novel categories are prone to dominated by color, texture, shape of the object or background context (namely specificity), which are distinct for the given few training samples but not common for the corresponding categories (see Figure 1). Fortunately, we find that transferring information of the correlated based categories can help learn the novel concepts and thus avoid the novel concept being dominated by the specificity. Besides, incorporating semantic correlations among different categories can effectively regularize this information transfer. In this work, we represent the semantic correlations in the form of structured knowledge graph and integrate this graph into deep neural networks to promote few-shot learning by a novel Knowledge Graph Transfer Network (KGTN). Specifically, by initializing each node with the classifier weight of the corresponding category, a propagation mechanism is learned to adaptively propagate node message through the graph to explore node interaction and transfer classifier information of the base categories to those of the novel ones. Extensive experiments on the ImageNet dataset show significant performance improvement compared with current leading competitors. Furthermore, we construct an ImageNet-6K dataset that covers larger scale categories, i.e, 6,000 categories, and experiments on this dataset further demonstrate the effectiveness of our proposed model.

北京阿比特科技有限公司