亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Conversations among online users sometimes derail, i.e., break down into personal attacks. Such derailment has a negative impact on the healthy growth of cyberspace communities. The ability to predict whether ongoing conversations are likely to derail could provide valuable real-time insight to interlocutors and moderators. Prior approaches predict conversation derailment retrospectively without the ability to forestall the derailment proactively. Some works attempt to make dynamic prediction as the conversation develops, but fail to incorporate multisource information, such as conversation structure and distance to derailment. We propose a hierarchical transformer-based framework that combines utterance-level and conversation-level information to capture fine-grained contextual semantics. We propose a domain-adaptive pretraining objective to integrate conversational structure information and a multitask learning scheme to leverage the distance from each utterance to derailment. An evaluation of our framework on two conversation derailment datasets yields improvement over F1 score for the prediction of derailment. These results demonstrate the effectiveness of incorporating multisource information.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Performer · 模型性能 · contrastive · Attention ·
2023 年 5 月 9 日

Recently, much Chinese text error correction work has focused on Chinese Spelling Check (CSC) and Chinese Grammatical Error Diagnosis (CGED). In contrast, little attention has been paid to the complicated problem of Chinese Semantic Error Diagnosis (CSED), which lacks relevant datasets. The study of semantic errors is important because they are very common and may lead to syntactic irregularities or even problems of comprehension. To investigate this, we build the CSED corpus, which includes two datasets. The one is for the CSED-Recognition (CSED-R) task. The other is for the CSED-Correction (CSED-C) task. Our annotation guarantees high-quality data through quality assurance mechanisms. Our experiments show that powerful pre-trained models perform poorly on this corpus. We also find that the CSED task is challenging, as evidenced by the fact that even humans receive a low score. This paper proposes syntax-aware models to specifically adapt to the CSED task. The experimental results show that the introduction of the syntax-aware approach is meaningful.

Relation extraction (RE) is the core NLP task of inferring semantic relationships between entities from text. Standard supervised RE techniques entail training modules to tag tokens comprising entity spans and then predict the relationship between them. Recent work has instead treated the problem as a \emph{sequence-to-sequence} task, linearizing relations between entities as target strings to be generated conditioned on the input. Here we push the limits of this approach, using larger language models (GPT-3 and Flan-T5 large) than considered in prior work and evaluating their performance on standard RE tasks under varying levels of supervision. We address issues inherent to evaluating generative approaches to RE by doing human evaluations, in lieu of relying on exact matching. Under this refined evaluation, we find that: (1) Few-shot prompting with GPT-3 achieves near SOTA performance, i.e., roughly equivalent to existing fully supervised models; (2) Flan-T5 is not as capable in the few-shot setting, but supervising and fine-tuning it with Chain-of-Thought (CoT) style explanations (generated via GPT-3) yields SOTA results. We release this model as a new baseline for RE tasks.

This paper explores the potential for utilizing generative AI models in group-focused co-creative frameworks to enhance problem solving and ideation in business innovation and co-creation contexts, and proposes a novel prompting technique for conversational generative AI agents which employ methods inspired by traditional 'human-to-human' facilitation and instruction to enable active contribution to Design Thinking, a co-creative framework. Through experiments using this prompting technique, we gather evidence that conversational generative transformers (i.e. ChatGPT) have the capability to contribute context-specific, useful, and creative input into Design Thinking activities. We also discuss the potential benefits, limitations, and risks associated with using generative AI models in co-creative ideation and provide recommendations for future research.

Conversational Question Generation (CQG) is a critical task for machines to assist humans in fulfilling their information needs through conversations. The task is generally cast into two different settings: answer-aware and answer-unaware. While the former facilitates the models by exposing the expected answer, the latter is more realistic and receiving growing attentions recently. What-to-ask and how-to-ask are the two main challenges in the answer-unaware setting. To address the first challenge, existing methods mainly select sequential sentences in context as the rationales. We argue that the conversation generated using such naive heuristics may not be natural enough as in reality, the interlocutors often talk about the relevant contents that are not necessarily sequential in context. Additionally, previous methods decide the type of question to be generated (boolean/span-based) implicitly. Modeling the question type explicitly is crucial as the answer, which hints the models to generate a boolean or span-based question, is unavailable. To this end, we present SG-CQG, a two-stage CQG framework. For the what-to-ask stage, a sentence is selected as the rationale from a semantic graph that we construct, and extract the answer span from it. For the how-to-ask stage, a classifier determines the target answer type of the question via two explicit control signals before generating and filtering. In addition, we propose Conv-Distinct, a novel evaluation metric for CQG, to evaluate the diversity of the generated conversation from a context. Compared with the existing answer-unaware CQG models, the proposed SG-CQG achieves state-of-the-art performance.

Conversational recommender system (CRS) interacts with users through multi-turn dialogues in natural language, which aims to provide high-quality recommendations for user's instant information need. Although great efforts have been made to develop effective CRS, most of them still focus on the contextual information from the current dialogue, usually suffering from the data scarcity issue. Therefore, we consider leveraging historical dialogue data to enrich the limited contexts of the current dialogue session. In this paper, we propose a novel multi-grained hypergraph interest modeling approach to capture user interest beneath intricate historical data from different perspectives. As the core idea, we employ hypergraph to represent complicated semantic relations underlying historical dialogues. In our approach, we first employ the hypergraph structure to model users' historical dialogue sessions and form a session-based hypergraph, which captures coarse-grained, session-level relations. Second, to alleviate the issue of data scarcity, we use an external knowledge graph and construct a knowledge-based hypergraph considering fine-grained, entity-level semantics. We further conduct multi-grained hypergraph convolution on the two kinds of hypergraphs, and utilize the enhanced representations to develop interest-aware CRS. Extensive experiments on two benchmarks ReDial and TG-ReDial validate the effectiveness of our approach on both recommendation and conversation tasks. Code is available at: //github.com/RUCAIBox/MHIM.

Click-Through Rate (CTR) prediction is the most critical task in product and content recommendation, and learning effective feature interaction is the key challenge to exploiting user preferences for products. Some recent research works focus on investigating more sophisticated feature interactions based on soft attention or gate mechanism, while some redundant or contradictory feature combinations are still introduced. According to Global Workspace Theory in conscious processing, human clicks on advertisements ``consciously'': only a specific subset of product features are considered, and the rest are not involved in conscious processing. Therefore, we propose a CTR model that \textbf{D}irectly \textbf{E}nhances the embeddings and \textbf{L}everages \textbf{T}runcated Conscious \textbf{A}ttention during feature interaction, termed DELTA, which contains two key components: (I) conscious truncation module (CTM), which utilizes curriculum learning to apply adaptive truncation on attention weights to select the most critical feature combinations; (II) direct embedding enhancement module (DEM), which directly and independently propagates gradient from the loss layer to the embedding layer to enhance the crucial embeddings via linear feature crossing without introducing any extra cost during inference. Extensive experiments on five challenging CTR datasets demonstrate that DELTA achieves cutting-edge performance among current state-of-the-art CTR methods.

Incorporating knowledge graph into recommender systems has attracted increasing attention in recent years. By exploring the interlinks within a knowledge graph, the connectivity between users and items can be discovered as paths, which provide rich and complementary information to user-item interactions. Such connectivity not only reveals the semantics of entities and relations, but also helps to comprehend a user's interest. However, existing efforts have not fully explored this connectivity to infer user preferences, especially in terms of modeling the sequential dependencies within and holistic semantics of a path. In this paper, we contribute a new model named Knowledge-aware Path Recurrent Network (KPRN) to exploit knowledge graph for recommendation. KPRN can generate path representations by composing the semantics of both entities and relations. By leveraging the sequential dependencies within a path, we allow effective reasoning on paths to infer the underlying rationale of a user-item interaction. Furthermore, we design a new weighted pooling operation to discriminate the strengths of different paths in connecting a user with an item, endowing our model with a certain level of explainability. We conduct extensive experiments on two datasets about movie and music, demonstrating significant improvements over state-of-the-art solutions Collaborative Knowledge Base Embedding and Neural Factorization Machine.

Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.

Recommender systems (RSs) have been the most important technology for increasing the business in Taobao, the largest online consumer-to-consumer (C2C) platform in China. The billion-scale data in Taobao creates three major challenges to Taobao's RS: scalability, sparsity and cold start. In this paper, we present our technical solutions to address these three challenges. The methods are based on the graph embedding framework. We first construct an item graph from users' behavior history. Each item is then represented as a vector using graph embedding. The item embeddings are employed to compute pairwise similarities between all items, which are then used in the recommendation process. To alleviate the sparsity and cold start problems, side information is incorporated into the embedding framework. We propose two aggregation methods to integrate the embeddings of items and the corresponding side information. Experimental results from offline experiments show that methods incorporating side information are superior to those that do not. Further, we describe the platform upon which the embedding methods are deployed and the workflow to process the billion-scale data in Taobao. Using online A/B test, we show that the online Click-Through-Rate (CTRs) are improved comparing to the previous recommendation methods widely used in Taobao, further demonstrating the effectiveness and feasibility of our proposed methods in Taobao's live production environment.

We study the problem of textual relation embedding with distant supervision. To combat the wrong labeling problem of distant supervision, we propose to embed textual relations with global statistics of relations, i.e., the co-occurrence statistics of textual and knowledge base relations collected from the entire corpus. This approach turns out to be more robust to the training noise introduced by distant supervision. On a popular relation extraction dataset, we show that the learned textual relation embedding can be used to augment existing relation extraction models and significantly improve their performance. Most remarkably, for the top 1,000 relational facts discovered by the best existing model, the precision can be improved from 83.9% to 89.3%.

北京阿比特科技有限公司