Recently, much Chinese text error correction work has focused on Chinese Spelling Check (CSC) and Chinese Grammatical Error Diagnosis (CGED). In contrast, little attention has been paid to the complicated problem of Chinese Semantic Error Diagnosis (CSED), which lacks relevant datasets. The study of semantic errors is important because they are very common and may lead to syntactic irregularities or even problems of comprehension. To investigate this, we build the CSED corpus, which includes two datasets. The one is for the CSED-Recognition (CSED-R) task. The other is for the CSED-Correction (CSED-C) task. Our annotation guarantees high-quality data through quality assurance mechanisms. Our experiments show that powerful pre-trained models perform poorly on this corpus. We also find that the CSED task is challenging, as evidenced by the fact that even humans receive a low score. This paper proposes syntax-aware models to specifically adapt to the CSED task. The experimental results show that the introduction of the syntax-aware approach is meaningful.
Full waveform inversion (FWI) updates the subsurface model from an initial model by comparing observed and synthetic seismograms. Due to high nonlinearity, FWI is easy to be trapped into local minima. Extended domain FWI, including wavefield reconstruction inversion (WRI) and extended source waveform inversion (ESI) are attractive options to mitigate this issue. This paper makes an in-depth analysis for FWI in the extended domain, identifying key challenges and searching for potential remedies torwards practical applications. WRI and ESI are formulated within the same mathematical framework using Lagrangian-based adjoint-state method with a special focus on time-domain formulation using extended sources, while putting connections between classical FWI, WRI and ESI: both WRI and ESI can be viewed as weighted versions of classic FWI. Due to symmetric positive definite Hessian, the conjugate gradient is explored to efficiently solve the normal equation in a matrix free manner, while both time and frequency domain wave equation solvers are feasible. This study finds that the most significant challenge comes from the huge storage demand to store time-domain wavefields through iterations. To resolve this challenge, two possible workaround strategies can be considered, i.e., by extracting sparse frequencial wavefields or by considering time-domain data instead of wavefields for reducing such challenge. We suggest that these options should be explored more intensively for tractable workflows.
Automatic singing voice understanding tasks, such as singer identification, singing voice transcription, and singing technique classification, benefit from data-driven approaches that utilize deep learning techniques. These approaches work well even under the rich diversity of vocal and noisy samples owing to their representation ability. However, the limited availability of labeled data remains a significant obstacle to achieving satisfactory performance. In recent years, self-supervised learning models (SSL models) have been trained using large amounts of unlabeled data in the field of speech processing and music classification. By fine-tuning these models for the target tasks, comparable performance to conventional supervised learning can be achieved with limited training data. Therefore, in this paper, we investigate the effectiveness of SSL models for various singing voice recognition tasks. We report the results of experiments comparing SSL models for three different tasks (i.e., singer identification, singing voice transcription, and singing technique classification) as initial exploration and aim to discuss these findings. Experimental results show that each SSL model achieves comparable performance and sometimes outperforms compared to state-of-the-art methods on each task. We also conducted a layer-wise analysis to further understand the behavior of the SSL models.
Introduction: Microblogging websites have massed rich data sources for sentiment analysis and opinion mining. In this regard, sentiment classification has frequently proven inefficient because microblog posts typically lack syntactically consistent terms and representatives since users on these social networks do not like to write lengthy statements. Also, there are some limitations to low-resource languages. The Persian language has exceptional characteristics and demands unique annotated data and models for the sentiment analysis task, which are distinctive from text features within the English dialect. Method: This paper first constructs a user opinion dataset called ITRC-Opinion by collaborative environment and insource way. Our dataset contains 60,000 informal and colloquial Persian texts from social microblogs such as Twitter and Instagram. Second, this study proposes a new deep convolutional neural network (CNN) model for more effective sentiment analysis of colloquial text in social microblog posts. The constructed datasets are used to evaluate the presented model. Furthermore, some models, such as LSTM, CNN-RNN, BiLSTM, and BiGRU with different word embeddings, including Fasttext, Glove, and Word2vec, investigated our dataset and evaluated the results. Results: The results demonstrate the benefit of our dataset and the proposed model (72% accuracy), displaying meaningful improvement in sentiment classification performance.
Rare diseases (RDs) are collectively common and affect 300 million people worldwide. Accurate phenotyping is critical for informing diagnosis and treatment, but RD phenotypes are often embedded in unstructured text and time-consuming to extract manually. While natural language processing (NLP) models can perform named entity recognition (NER) to automate extraction, a major bottleneck is the development of a large, annotated corpus for model training. Recently, prompt learning emerged as an NLP paradigm that can lead to more generalizable results without any (zero-shot) or few labeled samples (few-shot). Despite growing interest in ChatGPT, a revolutionary large language model capable of following complex human prompts and generating high-quality responses, none have studied its NER performance for RDs in the zero- and few-shot settings. To this end, we engineered novel prompts aimed at extracting RD phenotypes and, to the best of our knowledge, are the first the establish a benchmark for evaluating ChatGPT's performance in these settings. We compared its performance to the traditional fine-tuning approach and conducted an in-depth error analysis. Overall, fine-tuning BioClinicalBERT resulted in higher performance (F1 of 0.689) than ChatGPT (F1 of 0.472 and 0.591 in the zero- and few-shot settings, respectively). Despite this, ChatGPT achieved similar or higher accuracy for certain entities (i.e., rare diseases and signs) in the one-shot setting (F1 of 0.776 and 0.725). This suggests that with appropriate prompt engineering, ChatGPT has the potential to match or outperform fine-tuned language models for certain entity types with just one labeled sample. While the proliferation of large language models may provide opportunities for supporting RD diagnosis and treatment, researchers and clinicians should critically evaluate model outputs and be well-informed of their limitations.
Convolutional Neural Networks (CNNs) are frequently and successfully used in medical prediction tasks. They are often used in combination with transfer learning, leading to improved performance when training data for the task are scarce. The resulting models are highly complex and typically do not provide any insight into their predictive mechanisms, motivating the field of 'explainable' artificial intelligence (XAI). However, previous studies have rarely quantitatively evaluated the 'explanation performance' of XAI methods against ground-truth data, and transfer learning and its influence on objective measures of explanation performance has not been investigated. Here, we propose a benchmark dataset that allows for quantifying explanation performance in a realistic magnetic resonance imaging (MRI) classification task. We employ this benchmark to understand the influence of transfer learning on the quality of explanations. Experimental results show that popular XAI methods applied to the same underlying model differ vastly in performance, even when considering only correctly classified examples. We further observe that explanation performance strongly depends on the task used for pre-training and the number of CNN layers pre-trained. These results hold after correcting for a substantial correlation between explanation and classification performance.
This paper proposes an efficient and semi-automated method for human-in-the-loop post-editing for machine translation (MT) corpus generation. The method is based on online training of a custom MT quality estimation metric on-the-fly as linguists perform post-edits. The online estimator is used to prioritize worse hypotheses for post-editing, and auto-close best hypotheses without post-editing. This way, significant improvements can be achieved in the resulting quality of post-edits at a lower cost due to reduced human involvement. The trained estimator can also provide an online sanity check mechanism for post-edits and remove the need for additional linguists to review them or work on the same hypotheses. In this paper, the effect of prioritizing with the proposed method on the resulting MT corpus quality is presented versus scheduling hypotheses randomly. As demonstrated by experiments, the proposed method improves the lifecycle of MT models by focusing the linguist effort on production samples and hypotheses, which matter most for expanding MT corpora to be used for re-training them.
Mental distress like depression and anxiety contribute to the largest proportion of the global burden of diseases. Automated diagnosis systems of such disorders, empowered by recent innovations in Artificial Intelligence, can pave the way to reduce the sufferings of the affected individuals. Development of such systems requires information-rich and balanced corpora. In this work, we introduce a novel mental distress analysis audio dataset DEPAC, labeled based on established thresholds on depression and anxiety standard screening tools. This large dataset comprises multiple speech tasks per individual, as well as relevant demographic information. Alongside, we present a feature set consisting of hand-curated acoustic and linguistic features, which were found effective in identifying signs of mental illnesses in human speech. Finally, we justify the quality and effectiveness of our proposed audio corpus and feature set in predicting depression severity by comparing the performance of baseline machine learning models built on this dataset with baseline models trained on other well-known depression corpora.
Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved great success and become a milestone in the field of artificial intelligence (AI). Owing to sophisticated pre-training objectives and huge model parameters, large-scale PTMs can effectively capture knowledge from massive labeled and unlabeled data. By storing knowledge into huge parameters and fine-tuning on specific tasks, the rich knowledge implicitly encoded in huge parameters can benefit a variety of downstream tasks, which has been extensively demonstrated via experimental verification and empirical analysis. It is now the consensus of the AI community to adopt PTMs as backbone for downstream tasks rather than learning models from scratch. In this paper, we take a deep look into the history of pre-training, especially its special relation with transfer learning and self-supervised learning, to reveal the crucial position of PTMs in the AI development spectrum. Further, we comprehensively review the latest breakthroughs of PTMs. These breakthroughs are driven by the surge of computational power and the increasing availability of data, towards four important directions: designing effective architectures, utilizing rich contexts, improving computational efficiency, and conducting interpretation and theoretical analysis. Finally, we discuss a series of open problems and research directions of PTMs, and hope our view can inspire and advance the future study of PTMs.
Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks. Recently, an upgraded version of BERT has been released with Whole Word Masking (WWM), which mitigate the drawbacks of masking partial WordPiece tokens in pre-training BERT. In this technical report, we adapt whole word masking in Chinese text, that masking the whole word instead of masking Chinese characters, which could bring another challenge in Masked Language Model (MLM) pre-training task. The model was trained on the latest Chinese Wikipedia dump. We aim to provide easy extensibility and better performance for Chinese BERT without changing any neural architecture or even hyper-parameters. The model is verified on various NLP tasks, across sentence-level to document-level, including sentiment classification (ChnSentiCorp, Sina Weibo), named entity recognition (People Daily, MSRA-NER), natural language inference (XNLI), sentence pair matching (LCQMC, BQ Corpus), and machine reading comprehension (CMRC 2018, DRCD, CAIL RC). Experimental results on these datasets show that the whole word masking could bring another significant gain. Moreover, we also examine the effectiveness of Chinese pre-trained models: BERT, ERNIE, BERT-wwm. We release the pre-trained model (both TensorFlow and PyTorch) on GitHub: //github.com/ymcui/Chinese-BERT-wwm
We consider the problem of zero-shot recognition: learning a visual classifier for a category with zero training examples, just using the word embedding of the category and its relationship to other categories, which visual data are provided. The key to dealing with the unfamiliar or novel category is to transfer knowledge obtained from familiar classes to describe the unfamiliar class. In this paper, we build upon the recently introduced Graph Convolutional Network (GCN) and propose an approach that uses both semantic embeddings and the categorical relationships to predict the classifiers. Given a learned knowledge graph (KG), our approach takes as input semantic embeddings for each node (representing visual category). After a series of graph convolutions, we predict the visual classifier for each category. During training, the visual classifiers for a few categories are given to learn the GCN parameters. At test time, these filters are used to predict the visual classifiers of unseen categories. We show that our approach is robust to noise in the KG. More importantly, our approach provides significant improvement in performance compared to the current state-of-the-art results (from 2 ~ 3% on some metrics to whopping 20% on a few).