We investigate decentralized online convex optimization (D-OCO), in which a set of local learners are required to minimize a sequence of global loss functions using only local computations and communications. Previous studies have established $O(n^{5/4}\rho^{-1/2}\sqrt{T})$ and ${O}(n^{3/2}\rho^{-1}\log T)$ regret bounds for convex and strongly convex functions respectively, where $n$ is the number of local learners, $\rho<1$ is the spectral gap of the communication matrix, and $T$ is the time horizon. However, there exist large gaps from the existing lower bounds, i.e., $\Omega(n\sqrt{T})$ for convex functions and $\Omega(n)$ for strongly convex functions. To fill these gaps, in this paper, we first develop novel D-OCO algorithms that can respectively reduce the regret bounds for convex and strongly convex functions to $\tilde{O}(n\rho^{-1/4}\sqrt{T})$ and $\tilde{O}(n\rho^{-1/2}\log T)$. The primary technique is to design an online accelerated gossip strategy that enjoys a faster average consensus among local learners. Furthermore, by carefully exploiting the spectral properties of a specific network topology, we enhance the lower bounds for convex and strongly convex functions to $\Omega(n\rho^{-1/4}\sqrt{T})$ and $\Omega(n\rho^{-1/2})$, respectively. These lower bounds suggest that our algorithms are nearly optimal in terms of $T$, $n$, and $\rho$.
Generating accurate Structured Querying Language (SQL) is a long-standing problem, especially in matching users' semantic queries with structured databases and then generating structured SQL. Existing models typically input queries and database schemas into the LLM and rely on the LLM to perform semantic-structure matching and generate structured SQL. However, such solutions overlook the structural information within user queries and databases, which can be utilized to enhance the generation of structured SQL. This oversight can lead to inaccurate or unexecutable SQL generation. To fully exploit the structure, we propose a structure-to-SQL framework, which leverages the inherent structure information to improve the SQL generation of LLMs. Specifically, we introduce our Structure Guided SQL~(SGU-SQL) generation model. SGU-SQL first links user queries and databases in a structure-enhanced manner. It then decomposes complicated linked structures with grammar trees to guide the LLM to generate the SQL step by step. Extensive experiments on two benchmark datasets illustrate that SGU-SQL can outperform sixteen SQL generation baselines.
Grounding the common-sense reasoning of Large Language Models in physical domains remains a pivotal yet unsolved problem for embodied AI. Whereas prior works have focused on leveraging LLMs directly for planning in symbolic spaces, this work uses LLMs to guide the search of task structures and constraints implicit in multi-step demonstrations. Specifically, we borrow from manipulation planning literature the concept of mode families, which group robot configurations by specific motion constraints, to serve as an abstraction layer between the high-level language representations of an LLM and the low-level physical trajectories of a robot. By replaying a few human demonstrations with synthetic perturbations, we generate coverage over the demonstrations' state space with additional successful executions as well as counterfactuals that fail the task. Our explanation-based learning framework trains an end-to-end differentiable neural network to predict successful trajectories from failures and as a by-product learns classifiers that ground low-level states and images in mode families without dense labeling. The learned grounding classifiers can further be used to translate language plans into reactive policies in the physical domain in an interpretable manner. We show our approach improves the interpretability and reactivity of imitation learning through 2D navigation and simulated and real robot manipulation tasks. Website: //sites.google.com/view/grounding-plans
Causal inference is crucial for understanding the true impact of interventions, policies, or actions, enabling informed decision-making and providing insights into the underlying mechanisms that shape our world. In this paper, we establish a framework for the estimation and inference of average treatment effects using a two-sample empirical likelihood function. Two different approaches to incorporating propensity scores are developed. The first approach introduces propensity scores calibrated constraints in addition to the standard model-calibration constraints; the second approach uses the propensity scores to form weighted versions of the model-calibration constraints. The resulting estimators from both approaches are doubly robust. The limiting distributions of the two sample empirical likelihood ratio statistics are derived, facilitating the construction of confidence intervals and hypothesis tests for the average treatment effect. Bootstrap methods for constructing sample empirical likelihood ratio confidence intervals are also discussed for both approaches. Finite sample performances of the methods are investigated through simulation studies.
We conduct the first comprehensive security study on representative port forwarding services (PFS), which emerge in recent years and make the web services deployed in internal networks available on the Internet along with better usability but less complexity compared to traditional techniques (e.g., NAT traversal techniques). Our study is made possible through a set of novel methodologies, which are designed to uncover the technical mechanisms of PFS, experiment attack scenarios for PFS protocols, automatically discover and snapshot port-forwarded websites (PFWs) at scale, and classify PFWs into well-observed categories. Leveraging these methodologies, we have observed the widespread adoption of PFS with millions of PFWs distributed across tens of thousands of ISPs worldwide. Furthermore, 32.31% PFWs have been classified into website categories that serve access to critical data or infrastructure, such as, web consoles for industrial control systems, IoT controllers, code repositories, and office automation systems. And 18.57% PFWs didn't enforce any access control for external visitors. Also identified are two types of attacks inherent in the protocols of Oray (one well-adopted PFS provider), and the notable abuse of PFSes by malicious actors in activities such as malware distribution, botnet operation and phishing.
Observations of groundwater pollutants, such as arsenic or Perfluorooctane sulfonate (PFOS), are riddled with left censoring. These measurements have impact on the health and lifestyle of the populace. Left censoring of these spatially correlated observations are usually addressed by applying Gaussian processes (GPs), which have theoretical advantages. However, this comes with a challenging computational complexity of $\mathcal{O}(n^3)$, which is impractical for large datasets. Additionally, a sizable proportion of the data being left-censored creates further bottlenecks, since the likelihood computation now involves an intractable high-dimensional integral of the multivariate Gaussian density. In this article, we tackle these two problems simultaneously by approximating the GP with a Gaussian Markov random field (GMRF) approach that exploits an explicit link between a GP with Mat\'ern correlation function and a GMRF using stochastic partial differential equations (SPDEs). We introduce a GMRF-based measurement error into the model, which alleviates the likelihood computation for the censored data, drastically improving the speed of the model while maintaining admirable accuracy. Our approach demonstrates robustness and substantial computational scalability, compared to state-of-the-art methods for censored spatial responses across various simulation settings. Finally, the fit of this fully Bayesian model to the concentration of PFOS in groundwater available at 24,959 sites across California, where 46.62\% responses are censored, produces prediction surface and uncertainty quantification in real time, thereby substantiating the applicability and scalability of the proposed method. Code for implementation is made available via GitHub.
We initiate the study of utilizing Quantum Langevin Dynamics (QLD) to solve optimization problems, particularly those non-convex objective functions that present substantial obstacles for traditional gradient descent algorithms. Specifically, we examine the dynamics of a system coupled with an infinite heat bath. This interaction induces both random quantum noise and a deterministic damping effect to the system, which nudge the system towards a steady state that hovers near the global minimum of objective functions. We theoretically prove the convergence of QLD in convex landscapes, demonstrating that the average energy of the system can approach zero in the low temperature limit with an exponential decay rate correlated with the evolution time. Numerically, we first show the energy dissipation capability of QLD by retracing its origins to spontaneous emission. Furthermore, we conduct detailed discussion of the impact of each parameter. Finally, based on the observations when comparing QLD with classical Fokker-Plank-Smoluchowski equation, we propose a time-dependent QLD by making temperature and $\hbar$ time-dependent parameters, which can be theoretically proven to converge better than the time-independent case and also outperforms a series of state-of-the-art quantum and classical optimization algorithms in many non-convex landscapes.
Invariant risk minimization (IRM) has recently emerged as a promising alternative for domain generalization. Nevertheless, the loss function is difficult to optimize for nonlinear classifiers and the original optimization objective could fail when pseudo-invariant features and geometric skews exist. Inspired by IRM, in this paper we propose a novel formulation for domain generalization, dubbed invariant information bottleneck (IIB). IIB aims at minimizing invariant risks for nonlinear classifiers and simultaneously mitigating the impact of pseudo-invariant features and geometric skews. Specifically, we first present a novel formulation for invariant causal prediction via mutual information. Then we adopt the variational formulation of the mutual information to develop a tractable loss function for nonlinear classifiers. To overcome the failure modes of IRM, we propose to minimize the mutual information between the inputs and the corresponding representations. IIB significantly outperforms IRM on synthetic datasets, where the pseudo-invariant features and geometric skews occur, showing the effectiveness of proposed formulation in overcoming failure modes of IRM. Furthermore, experiments on DomainBed show that IIB outperforms $13$ baselines by $0.9\%$ on average across $7$ real datasets.
Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.
Graphs, which describe pairwise relations between objects, are essential representations of many real-world data such as social networks. In recent years, graph neural networks, which extend the neural network models to graph data, have attracted increasing attention. Graph neural networks have been applied to advance many different graph related tasks such as reasoning dynamics of the physical system, graph classification, and node classification. Most of the existing graph neural network models have been designed for static graphs, while many real-world graphs are inherently dynamic. For example, social networks are naturally evolving as new users joining and new relations being created. Current graph neural network models cannot utilize the dynamic information in dynamic graphs. However, the dynamic information has been proven to enhance the performance of many graph analytical tasks such as community detection and link prediction. Hence, it is necessary to design dedicated graph neural networks for dynamic graphs. In this paper, we propose DGNN, a new {\bf D}ynamic {\bf G}raph {\bf N}eural {\bf N}etwork model, which can model the dynamic information as the graph evolving. In particular, the proposed framework can keep updating node information by capturing the sequential information of edges, the time intervals between edges and information propagation coherently. Experimental results on various dynamic graphs demonstrate the effectiveness of the proposed framework.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.