亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications. However, data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems. Motivated by the observation that signals recorded by wireless receivers are closely related to a set of physical-layer semantic features, in this paper we propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data. We develop a novel physical-layer semantic-aware network (pSAN) framework to characterize the correlation between physical-layer semantic features and the sensing data distributions across different receivers. We then propose a pSAN-based zero-shot learning solution in which each receiver can obtain a location-specific gesture recognition model by directly aggregating the already constructed models of other receivers. We theoretically prove that models obtained by our proposed solution can approach the optimal model without requiring any local model training. Experimental results once again verify that the accuracy of models derived by our proposed solution matches that of the models trained by the real labeled data based on supervised learning approach.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 優化器 · 粒子群優化算法 · Performer · Better ·
2024 年 1 月 30 日

Movable antenna (MA) provides an innovative way to arrange antennas that can contribute to improved signal quality and more effective interference management. This method is especially beneficial for full-duplex (FD) wireless, which struggles with self-interference (SI) that usually overpowers the desired incoming signals. By dynamically repositioning transmit/receive antennas, we can mitigate the SI and enhance the reception of incoming signals. Thus, this paper proposes a novel MA-enabled point-to-point FD wireless system and formulates the minimum achievable rate of two FD terminals. To maximize the minimum achievable rate and determine the near-optimal positions of the MAs, we introduce a solution based on projected particle swarm optimization (PPSO), which can circumvent common suboptimal positioning issues. Moreover, numerical results reveal that the PPSO method leads to a better performance compared to the conventional alternating position optimization (APO). The results also demonstrate that an MA-enabled FD system outperforms the one using fixed-position antennas (FPAs).

We consider the transmission of spatially correlated analog information in a wireless sensor network (WSN) through fading single-input and multiple-output (SIMO) multiple access channels (MACs) with low-latency requirements. A lattice-based analog joint source-channel coding (JSCC) approach is considered where vectors of consecutive source symbols are encoded at each sensor using an n-dimensional lattice and then transmitted to a multiantenna central node. We derive a minimum mean square error (MMSE) decoder that accounts for both the multidimensional structure of the encoding lattices and the spatial correlation. In addition, a sphere decoder is considered to simplify the required searches over the multidimensional lattices. Different lattice-based mappings are approached and the impact of their size and density on performance and latency is analyzed. Results show that, while meeting low-latency constraints, lattice-based analog JSCC provides performance gains and higher reliability with respect to the state-of-the-art JSCC schemes.

RISC-V processors encounter substantial challenges in deploying multi-precision deep neural networks (DNNs) due to their restricted precision support, constrained throughput, and suboptimal dataflow design. To tackle these challenges, a scalable RISC-V vector (RVV) processor, namely SPEED, is proposed to enable efficient multi-precision DNN inference by innovations from customized instructions, hardware architecture, and dataflow mapping. Firstly, dedicated customized RISC-V instructions are proposed based on RVV extensions, providing SPEED with fine-grained control over processing precision ranging from 4 to 16 bits. Secondly, a parameterized multi-precision systolic array unit is incorporated within the scalable module to enhance parallel processing capability and data reuse opportunities. Finally, a mixed multi-precision dataflow strategy, compatible with different convolution kernels and data precision, is proposed to effectively improve data utilization and computational efficiency. We perform synthesis of SPEED in TSMC 28nm technology. The experimental results demonstrate that SPEED achieves a peak throughput of 287.41 GOPS and an energy efficiency of 1335.79 GOPS/W at 4-bit precision condition, respectively. Moreover, when compared to the pioneer open-source vector processor Ara, SPEED provides an area efficiency improvement of 2.04$\times$ and 1.63$\times$ under 16-bit and 8-bit precision conditions, respectively, which shows SPEED's significant potential for efficient multi-precision DNN inference.

Model generalizability to unseen datasets, concerned with in-the-wild robustness, is less studied for indoor single-image depth prediction. We leverage gradient-based meta-learning for higher generalizability on zero-shot cross-dataset inference. Unlike the most-studied image classification in meta-learning, depth is pixel-level continuous range values, and mappings from each image to depth vary widely across environments. Thus no explicit task boundaries exist. We instead propose fine-grained task that treats each RGB-D pair as a task in our meta-optimization. We first show meta-learning on limited data induces much better prior (max +29.4\%). Using meta-learned weights as initialization for following supervised learning, without involving extra data or information, it consistently outperforms baselines without the method. Compared to most indoor-depth methods that only train/ test on a single dataset, we propose zero-shot cross-dataset protocols, closely evaluate robustness, and show consistently higher generalizability and accuracy by our meta-initialization. The work at the intersection of depth and meta-learning potentially drives both research streams to step closer to practical use.

We show that a distributed network of robots or other devices which make measurements of each other can collaborate to globally localise via efficient ad-hoc peer to peer communication. Our Robot Web solution is based on Gaussian Belief Propagation on the fundamental non-linear factor graph describing the probabilistic structure of all of the observations robots make internally or of each other, and is flexible for any type of robot, motion or sensor. We define a simple and efficient communication protocol which can be implemented by the publishing and reading of web pages or other asynchronous communication technologies. We show in simulations with up to 1000 robots interacting in arbitrary patterns that our solution convergently achieves global accuracy as accurate as a centralised non-linear factor graph solver while operating with high distributed efficiency of computation and communication. Via the use of robust factors in GBP, our method is tolerant to a high percentage of faults in sensor measurements or dropped communication packets.

Neural networks are vulnerable to adversarial attacks, i.e., small input perturbations can result in substantially different outputs of a neural network. Safety-critical environments require neural networks that are robust against input perturbations. However, training and formally verifying robust neural networks is challenging. We address this challenge by employing, for the first time, a end-to-end set-based training procedure that trains robust neural networks for formal verification. Our training procedure drastically simplifies the subsequent formal robustness verification of the trained neural network. While previous research has predominantly focused on augmenting neural network training with adversarial attacks, our approach leverages set-based computing to train neural networks with entire sets of perturbed inputs. Moreover, we demonstrate that our set-based training procedure effectively trains robust neural networks, which are easier to verify. In many cases, set-based trained neural networks outperform neural networks trained with state-of-the-art adversarial attacks.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.

Leveraging datasets available to learn a model with high generalization ability to unseen domains is important for computer vision, especially when the unseen domain's annotated data are unavailable. We study a novel and practical problem of Open Domain Generalization (OpenDG), which learns from different source domains to achieve high performance on an unknown target domain, where the distributions and label sets of each individual source domain and the target domain can be different. The problem can be generally applied to diverse source domains and widely applicable to real-world applications. We propose a Domain-Augmented Meta-Learning framework to learn open-domain generalizable representations. We augment domains on both feature-level by a new Dirichlet mixup and label-level by distilled soft-labeling, which complements each domain with missing classes and other domain knowledge. We conduct meta-learning over domains by designing new meta-learning tasks and losses to preserve domain unique knowledge and generalize knowledge across domains simultaneously. Experiment results on various multi-domain datasets demonstrate that the proposed Domain-Augmented Meta-Learning (DAML) outperforms prior methods for unseen domain recognition.

Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complicated and user relations can be high-order. Hypergraph provides a natural way to model complex high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. The experimental results on multiple real-world datasets show that the proposed model outperforms the SOTA methods, and the ablation study verifies the effectiveness of the multi-channel setting and the self-supervised task. The implementation of our model is available via //github.com/Coder-Yu/RecQ.

北京阿比特科技有限公司