亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Karppa & Kaski (2019) proposed a novel type of "broken" or "opportunistic" multiplication algorithm, based on a variant of Strassen's alkgorithm, and used this to develop new algorithms for Boolean matrix multiplication, among other tasks. For instance, their algorithm can compute Boolean matrix multiplication in $O(n^{\log_2(6 + 6/7)} \log n) = O(n^{2.778})$ time. While faster matrix multiplication algorithms exist asymptotically, in practice most such algorithms are infeasible for practical problems. Their opportunistic algorithm is a slight variant of Strassen's algorithm, so hopefully it should yield practical as well as asymptotic improvements to it. In this note, we describe a more efficient way to use the broken matrix multiplication algorithm to solve Boolean matrix multiplication. In brief, instead of running multiple iterations of the broken algorithm on the original input matrix, we form a new larger matrix by sampling and run a single iteration of the broken algorithm on it. The resulting algorithm has runtime $O( n^{\frac{3 \log 6}{\log 7}} (\log n)^{\frac{ \log 6}{\log 7}}) \leq O(n^{2.763})$. We also describe an extension to witnessing Boolean matrix multiplication, as well as extensions to non-square matrices. The new algorithm is simple and has reasonable constants. We hope it may lead to improved practical algorithms

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

For a matrix $A\in \mathbb{R}^{n\times d}$ with $n\geq d$, we consider the dual problems of $\min \|Ax-b\|_p^p, \, b\in \mathbb{R}^n$ and $\min_{A^\top x=b} \|x\|_p^p,\, b\in \mathbb{R}^d$. We improve the runtimes for solving these problems to high accuracy for every $p>1$ for sufficiently sparse matrices. We show that recent progress on fast sparse linear solvers can be leveraged to obtain faster than matrix-multiplication algorithms for any $p > 1$, i.e., in time $\tilde{O}(pn^\theta)$ for some $\theta < \omega$, the matrix multiplication constant. We give the first high-accuracy input sparsity $p$-norm regression algorithm for solving $\min \|Ax-b\|_p^p$ with $1 < p \leq 2$, via a new row sampling theorem for the smoothed $p$-norm function. This algorithm runs in time $\tilde{O}(\text{nnz}(A) + d^4)$ for any $1<p\leq 2$, and in time $\tilde{O}(\text{nnz}(A) + d^\theta)$ for $p$ close to $2$, improving on the previous best bound where the exponent of $d$ grows with $\max\{p, p/(p-1)\}$.

In the field of topological data analysis, persistence modules are used to express geometrical features of data sets. The matching distance $d_\mathcal{M}$ measures the difference between $2$-parameter persistence modules by taking the maximum bottleneck distance between $1$-parameter slices of the modules. The previous fastest algorithm to compute $d_\mathcal{M}$ exactly runs in $O(n^{8+\omega})$, where $\omega$ is the matrix multiplication constant. We improve significantly on this by describing an algorithm with expected running time $O(n^5 \log^3 n)$. We first solve the decision problem $d_\mathcal{M}\leq \lambda$ for a constant $\lambda$ in $O(n^5\log n)$ by traversing a line arrangement in the dual plane, where each point represents a slice. Then we lift the line arrangement to a plane arrangement in $\mathbb{R}^3$ whose vertices represent possible values for $d_\mathcal{M}$, and use a randomized incremental method to search through the vertices and find $d_\mathcal{M}$. The expected running time of this algorithm is $O((n^4+T(n))\log^2 n)$, where $T(n)$ is an upper bound for the complexity of deciding if $d_\mathcal{M}\leq \lambda$.

Kernel matrices are crucial in many learning tasks such as support vector machines or kernel ridge regression. The kernel matrix is typically dense and large-scale. Depending on the dimension of the feature space even the computation of all of its entries in reasonable time becomes a challenging task. For such dense matrices the cost of a matrix-vector product scales quadratically in the number of entries, if no customized methods are applied. We propose the use of an ANOVA kernel, where we construct several kernels based on lower-dimensional feature spaces for which we provide fast algorithms realizing the matrix-vector products. We employ the non-equispaced fast Fourier transform (NFFT), which is of linear complexity for fixed accuracy. Based on a feature grouping approach, we then show how the fast matrix-vector products can be embedded into a learning method choosing kernel ridge regression and the preconditioned conjugate gradient solver. We illustrate the performance of our approach on several data sets.

Visualizing very large matrices involves many formidable problems. Various popular solutions to these problems involve sampling, clustering, projection, or feature selection to reduce the size and complexity of the original task. An important aspect of these methods is how to preserve relative distances between points in the higher-dimensional space after reducing rows and columns to fit in a lower dimensional space. This aspect is important because conclusions based on faulty visual reasoning can be harmful. Judging dissimilar points as similar or similar points as dissimilar on the basis of a visualization can lead to false conclusions. To ameliorate this bias and to make visualizations of very large datasets feasible, we introduce two new algorithms that respectively select a subset of rows and columns of a rectangular matrix. This selection is designed to preserve relative distances as closely as possible. We compare our matrix sketch to more traditional alternatives on a variety of artificial and real datasets.

A Las Vegas randomized algorithm is given to compute the Smith multipliers for a nonsingular integer matrix $A$, that is, unimodular matrices $U$ and $V$ such that $AV=US$, with $S$ the Smith normal form of $A$. The expected running time of the algorithm is about the same as required to multiply together two matrices of the same dimension and size of entries as $A$. Explicit bounds are given for the size of the entries in both unimodular multipliers. The main tool used by the algorithm is the Smith massager, a relaxed version of $V$, the unimodular matrix specifying the column operations of the Smith computation. From the perspective of efficiency, the main tools used are fast linear solving and partial linearization of integer matrices. As an application of the Smith with multipliers algorithm, a fast algorithm is given to find the fractional part of the inverse of the input matrix.

Computing the product of two sparse matrices (SpGEMM) is a fundamental operation in various combinatorial and graph algorithms as well as various bioinformatics and data analytics applications for computing inner-product similarities. For an important class of algorithms, only a subset of the output entries are needed, and the resulting operation is known as Masked SpGEMM since a subset of the output entries is considered to be "masked out". Existing algorithms for Masked SpGEMM usually do not consider mask as part of multiplication and either first compute a regular SpGEMM followed by masking, or perform a sparse inner product only for output elements that are not masked out. In this work, we investigate various novel algorithms and data structures for this rather challenging and important computation, and provide guidelines on how to design a fast Masked-SpGEMM for shared-memory architectures. Our evaluations show that factors such as matrix and mask density, mask structure and cache behavior play a vital role in attaining high performance for Masked SpGEMM. We evaluate our algorithms on a large number of matrices using several real-world benchmarks and show that our algorithms in most cases significantly outperform the state of the art for Masked SpGEMM implementations.

We give a new algorithm for the estimation of the cross-covariance matrix $\mathbb{E} XY'$ of two large dimensional signals $X\in\mathbb{R}^n$, $Y\in \mathbb{R}^p$ in the context where the number $T$ of observations of the pair $(X,Y)$ is large but $n/T$ and $p/T$ are not supposed to be small. In the asymptotic regime where $n,p,T$ are large, with high probability, this algorithm is optimal for the Frobenius norm among rotationally invariant estimators, i.e. estimators derived from the empirical estimator by cleaning the singular values, while letting singular vectors unchanged.

We study the problem of estimating the size of maximum matching and minimum vertex cover in sublinear time. Denoting the number of vertices by $n$ and the average degree in the graph by $\bar{d}$, we obtain the following results for both problems: * A multiplicative $(2+\epsilon)$-approximation that takes $\tilde{O}(n/\epsilon^2)$ time using adjacency list queries. * A multiplicative-additive $(2, \epsilon n)$-approximation in $\tilde{O}((\bar{d} + 1)/\epsilon^2)$ time using adjacency list queries. * A multiplicative-additive $(2, \epsilon n)$-approximation in $\tilde{O}(n/\epsilon^{3})$ time using adjacency matrix queries. All three results are provably time-optimal up to polylogarithmic factors culminating a long line of work on these problems. Our main contribution and the key ingredient leading to the bounds above is a new and near-tight analysis of the average query complexity of the randomized greedy maximal matching algorithm which improves upon a seminal result of Yoshida, Yamamoto, and Ito [STOC'09].

Multiplying matrices is among the most fundamental and compute-intensive operations in machine learning. Consequently, there has been significant work on efficiently approximating matrix multiplies. We introduce a learning-based algorithm for this task that greatly outperforms existing methods. Experiments using hundreds of matrices from diverse domains show that it often runs $100\times$ faster than exact matrix products and $10\times$ faster than current approximate methods. In the common case that one matrix is known ahead of time, our method also has the interesting property that it requires zero multiply-adds. These results suggest that a mixture of hashing, averaging, and byte shuffling$-$the core operations of our method$-$could be a more promising building block for machine learning than the sparsified, factorized, and/or scalar quantized matrix products that have recently been the focus of substantial research and hardware investment.

We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.

北京阿比特科技有限公司