亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper utilizes finite Fourier series to represent a time-continuous motion and proposes a novel planning method that adjusts the motion harmonics of each manipulator joint. Primarily, we sum the potential energy for collision detection and the kinetic energy up to calculate the Hamiltonian of the manipulator motion harmonics. Though the adaptive interior-point method is designed to modify the harmonics in its finite frequency domain, we still encounter the local minima due to the non-convexity of the collision field. In this way, we learn the collision field through a support vector machine with a Gaussian kernel, which is highly convex. The learning-based collision field is applied for Hamiltonian, and the experiment results show our method's high reliability and efficiency.

相關內容

This paper proposes the MBURST, a novel multimodal solution for audio-visual speech enhancements that consider the most recent neurological discoveries regarding pyramidal cells of the prefrontal cortex and other brain regions. The so-called burst propagation implements several criteria to address the credit assignment problem in a more biologically plausible manner: steering the sign and magnitude of plasticity through feedback, multiplexing the feedback and feedforward information across layers through different weight connections, approximating feedback and feedforward connections, and linearizing the feedback signals. MBURST benefits from such capabilities to learn correlations between the noisy signal and the visual stimuli, thus attributing meaning to the speech by amplifying relevant information and suppressing noise. Experiments conducted over a Grid Corpus and CHiME3-based dataset show that MBURST can reproduce similar mask reconstructions to the multimodal backpropagation-based baseline while demonstrating outstanding energy efficiency management, reducing the neuron firing rates to values up to \textbf{$70\%$} lower. Such a feature implies more sustainable implementations, suitable and desirable for hearing aids or any other similar embedded systems.

We present a method to create storytelling visualization with time series data. Many personal decisions nowadays rely on access to dynamic data regularly, as we have seen during the COVID-19 pandemic. It is thus desirable to construct storytelling visualization for dynamic data that is selected by an individual for a specific context. Because of the need to tell data-dependent stories, predefined storyboards based on known data cannot accommodate dynamic data easily nor scale up to many different individuals and contexts. Motivated initially by the need to communicate time series data during the COVID-19 pandemic, we developed a novel computer-assisted method for meta-authoring of stories, which enables the design of storyboards that include feature-action patterns in anticipation of potential features that may appear in dynamically arrived or selected data. In addition to meta-storyboards involving COVID-19 data, we also present storyboards for telling stories about progress in a machine learning workflow. Our approach is complementary to traditional methods for authoring storytelling visualization, and provides an efficient means to construct data-dependent storyboards for different data-streams of similar contexts.

We propose a fast method for solving compressed sensing, Lasso regression, and Logistic Lasso regression problems that iteratively runs an appropriate solver using an active set approach. We design a strategy to update the active set that achieves a large speedup over a single call of several solvers, including gradient projection for sparse reconstruction (GPSR), lassoglm of Matlab, and glmnet. For compressed sensing, the hybrid of our method and GPSR is 31.41 times faster than GPSR on average for Gaussian ensembles and 25.64 faster on average for binary ensembles. For Lasso regression, the hybrid of our method and GPSR achieves a 30.67-fold average speedup in our experiments. In our experiments on Logistic Lasso regression, the hybrid of our method and lassoglm gives an 11.95-fold average speedup, and the hybrid of our method and glmnet gives a 1.40-fold average speedup.

This paper introduces a novel numerical approach to achieving smooth lane-change trajectories in autonomous driving scenarios. Our trajectory generation approach leverages particle swarm optimization (PSO) techniques, incorporating Neural Network (NN) predictions for trajectory refinement. The generation of smooth and dynamically feasible trajectories for the lane change maneuver is facilitated by combining polynomial curve fitting with particle propagation, which can account for vehicle dynamics. The proposed planning algorithm is capable of determining feasible trajectories with real-time computation capability. We conduct comparative analyses with two baseline methods for lane changing, involving analytic solutions and heuristic techniques in numerical simulations. The simulation results validate the efficacy and effectiveness of our proposed approach.

As artificial intelligence (AI) continues advancing, ensuring positive societal impacts becomes critical, especially as AI systems become increasingly ubiquitous in various aspects of life. However, developing "AI for good" poses substantial challenges around aligning systems with complex human values. Presently, we lack mature methods for addressing these challenges. This article presents and evaluates the Positive AI design method aimed at addressing this gap. The method provides a human-centered process to translate wellbeing aspirations into concrete practices. First, we explain the method's four key steps: contextualizing, operationalizing, optimizing, and implementing wellbeing supported by continuous measurement for feedback cycles. We then present a multiple case study where novice designers applied the method, revealing strengths and weaknesses related to efficacy and usability. Next, an expert evaluation study assessed the quality of the resulting concepts, rating them moderately high for feasibility, desirability, and plausibility of achieving intended wellbeing benefits. Together, these studies provide preliminary validation of the method's ability to improve AI design, while surfacing areas needing refinement like developing support for complex steps. Proposed adaptations such as examples and evaluation heuristics could address weaknesses. Further research should examine sustained application over multiple projects. This human-centered approach shows promise for realizing the vision of 'AI for Wellbeing' that does not just avoid harm, but actively benefits humanity.

This paper investigates the integration of beyond-diagonal reconfigurable intelligent surfaces (BD-RISs) into cell-free massive multiple-input multiple-output (CF-mMIMO) systems, focusing on applications involving simultaneous wireless information and power transfer (SWIPT). The system supports concurrently two user groups: information users (IUs) and energy users (EUs). A BD-RIS is employed to enhance the wireless power transfer (WPT) directed towards the EUs. To comprehensively evaluate the system's performance, we present an analytical framework for the spectral efficiency (SE) of IUs and the average harvested energy (HE) of EUs in the presence of spatial correlation among the BD-RIS elements and for a non-linear energy harvesting circuit. Our findings offer important insights into the transformative potential of BD-RIS, setting the stage for the development of more efficient and effective SWIPT networks. Finally, incorporating a heuristic scattering matrix design at the BD-RIS results in a substantial improvement compared to the scenario with random scattering matrix design.

This paper introduces a novel automated system for generating architecture schematic designs aimed at streamlining complex decision-making at the multifamily real estate development project's outset. Leveraging the combined strengths of generative AI (neuro reasoning) and mathematical program solvers (symbolic reasoning), the method addresses both the reliance on expert insights and technical challenges in architectural schematic design. To address the large-scale and interconnected nature of design decisions needed for designing a whole building, we proposed a novel sequential neuro-symbolic reasoning approach, emulating traditional architecture design processes from initial concept to detailed layout. To remove the need to hand-craft a cost function to approximate the desired objectives, we propose a solution that uses neuro reasoning to generate constraints and cost functions that the symbolic solvers can use to solve. We also incorporate feedback loops for each design stage to ensure a tight integration between neuro and symbolic reasoning. Developed using GPT-4 without further training, our method's effectiveness is validated through comparative studies with real-world buildings. Our method can generate various building designs in accordance with the understanding of the neighborhood, showcasing its potential to transform the realm of architectural schematic design.

This paper explores the feasibility and performance of on-device large language model (LLM) inference on various Apple iPhone models. Amidst the rapid evolution of generative AI, on-device LLMs offer solutions to privacy, security, and connectivity challenges inherent in cloud-based models. Leveraging existing literature on running multi-billion parameter LLMs on resource-limited devices, our study examines the thermal effects and interaction speeds of a high-performing LLM across different smartphone generations. We present real-world performance results, providing insights into on-device inference capabilities.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

北京阿比特科技有限公司