亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper investigates the integration of beyond-diagonal reconfigurable intelligent surfaces (BD-RISs) into cell-free massive multiple-input multiple-output (CF-mMIMO) systems, focusing on applications involving simultaneous wireless information and power transfer (SWIPT). The system supports concurrently two user groups: information users (IUs) and energy users (EUs). A BD-RIS is employed to enhance the wireless power transfer (WPT) directed towards the EUs. To comprehensively evaluate the system's performance, we present an analytical framework for the spectral efficiency (SE) of IUs and the average harvested energy (HE) of EUs in the presence of spatial correlation among the BD-RIS elements and for a non-linear energy harvesting circuit. Our findings offer important insights into the transformative potential of BD-RIS, setting the stage for the development of more efficient and effective SWIPT networks. Finally, incorporating a heuristic scattering matrix design at the BD-RIS results in a substantial improvement compared to the scenario with random scattering matrix design.

相關內容

Beyond diagonal reconfigurable intelligent surface (BD-RIS) extends conventional RIS through novel architectures, such as group-connected RIS, with scattering matrix not restricted to being diagonal. However, it remains unexplored how to optimally group the elements in group-connected RISs to maximize the performance while maintaining a low-complexity circuit. In this study, we propose and model BD-RIS with a static grouping strategy optimized based on the channel statistics. After formulating the corresponding problems, we design the grouping in single- and multi-user systems. Numerical results reveal the benefits of grouping optimization, i.e., up to 60% sum rate improvement, especially in highly correlated channels.

This paper investigates a reconfigurable intelligent surface (RIS)-aided wideband massive multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system with low-resolution analog-to-digital converters (ADCs). Frequency-selective Rician fading channels are considered, and the OFDM data transmission process is presented in time domain. This paper derives the closed-form approximate expression of the uplink achievable rate, based on which the asymptotic system performance is analyzed when the number of the antennas at the base station and the number of reflecting elements at the RIS grow to infinity. Besides, the power scaling laws of the considered system are revealed to provide energy-saving insights. Furthermore, this paper proposes a gradient ascent-based algorithm to design the phase shifts of the RIS for maximizing the minimum user rate. Finally, numerical results are presented to verify the correctness of analytical conclusions and draw insights.

The pursuit of higher data rates and efficient spectrum utilization in modern communication technologies necessitates novel solutions. In order to provide insights into improving spectral efficiency and reducing latency, this study investigates the maximum channel coding rate (MCCR) of finite block length (FBL) multiple-input multiple-output (MIMO) faster-than-Nyquist (FTN) channels. By optimizing power allocation, we derive the system's MCCR expression. Simulation results are compared with the existing literature to reveal the benefits of FTN in FBL transmission.

Patient management requires multitasking interaction with multimodal data. While today's AI, particularly large foundation models, promises unprecedented opportunities, progress remains relatively slow in developing medical multimodal multitask foundation models. There are two main challenges along this direction: the data challenge -- the high bar to curate medical multimodal multitask datasets including 3D medical tomographic images in alignment with other clinical datasets, and the model challenge -- the unavailability of a scalable and adaptable foundation model architecture to synergize multimodal datasets for diverse clinical tasks. Here we propose the first-of-its-kind medical multimodal-multitask foundation model (M3FM) with an emphasis on lung cancer screening. To train our M3FM, we first curated a comprehensive multimodal multitask dataset consisting of 163,725 3D chest CT exams, 48 clinical data types, and 17 medical tasks on lung, heart, and other chest diseases. Then, we created and applied a multimodal question-answering framework as a unified training strategy to effectively integrate multimodal information and naturally perform multiple tasks with free-text prompting. Extensive experimental results demonstrate that M3FM consistently outperforms the previous state-of-the-art models. M3FM can identify informative multimodal data elements that are relevant to specific clinical tasks, being instrumental in building AI models and gaining insights into correlations among multimodal data and diseases. M3FM can be adapted to boost the performance of new tasks with a small out-of-distribution dataset. M3FM has enabled superior volumetric CT imaging performance for lung cancer screening, cardiac disease prediction, and other CT-related tasks. M3FM can be extended to incorporate more data types and improve other medical tasks, towards AI-empowered precise and efficient medicine.

This paper explores the utilization of LLMs for data preprocessing (DP), a crucial step in the data mining pipeline that transforms raw data into a clean format conducive to easy processing. Whereas the use of LLMs has sparked interest in devising universal solutions to DP, recent initiatives in this domain typically rely on GPT APIs, raising inevitable data breach concerns. Unlike these approaches, we consider instruction-tuning local LLMs (7 - 13B models) as universal DP ask solver. We select a collection of datasets across four representative DP tasks and construct instruction-tuning data using serialization and knowledge injection techniques tailored to DP. As such, the instruction-tuned LLMs empower users to manually craft instructions for DP. Meanwhile, they can operate on a local, single, and low-priced GPU, ensuring data security and enabling further tuning. Our experiments show that our dataset constructed for DP instruction tuning, namely Jellyfish, effectively enhances LLMs' DP performances and barely compromises their abilities in NLP tasks. By tuning Mistral-7B and OpenOrca-Platypus2-13B with Jellyfish, the models deliver competitiveness compared to state-of-the-art DP methods and strong generalizability to unseen tasks. The models' performance rivals that of GPT series models, and the interpretation offers enhanced reasoning capabilities compared to GPT-3.5. The 7B and 13B Jellyfish models are available at Hugging Face: //huggingface.co/NECOUDBFM/Jellyfish-7B //huggingface.co/NECOUDBFM/Jellyfish-13B

This paper explores the potential of communicating information gained by static analysis from compilers to Out-of-Order (OoO) machines, focusing on the memory dependence predictor (MDP). The MDP enables loads to issue without all in-flight store addresses being known, with minimal memory order violations. We use LLVM to find loads with no dependencies and label them via their opcode. These labelled loads skip making lookups into the MDP, improving prediction accuracy by reducing false dependencies. We communicate this information in a minimally intrusive way, i.e.~without introducing additional hardware costs or instruction bandwidth, providing these improvements without any additional overhead in the CPU. We find that in select cases in Spec2017, a significant number of load instructions can skip interacting with the MDP and lead to a performance gain. These results point to greater possibilities for static analysis as a source of near zero cost performance gains in future CPU designs.

Kernel techniques are among the most influential approaches in data science and statistics. Under mild conditions, the reproducing kernel Hilbert space associated to a kernel is capable of encoding the independence of $M\ge 2$ random variables. Probably the most widespread independence measure relying on kernels is the so-called Hilbert-Schmidt independence criterion (HSIC; also referred to as distance covariance in the statistics literature). Despite various existing HSIC estimators designed since its introduction close to two decades ago, the fundamental question of the rate at which HSIC can be estimated is still open. In this work, we prove that the minimax optimal rate of HSIC estimation on $\mathbb R^d$ for Borel measures containing the Gaussians with continuous bounded translation-invariant characteristic kernels is $\mathcal O\!\left(n^{-1/2}\right)$. Specifically, our result implies the optimality in the minimax sense of many of the most-frequently used estimators (including the U-statistic, the V-statistic, and the Nystr\"om-based one) on $\mathbb R^d$.

In this paper, we introduce Tolerant Discrete Barrier States (T-DBaS), a novel safety-embedding technique for trajectory optimization with enhanced exploratory capabilities. The proposed approach generalizes the standard discrete barrier state (DBaS) method by accommodating temporary constraint violation during the optimization process while still approximating its safety guarantees. Consequently, the proposed approach eliminates the DBaS's safe nominal trajectories assumption, while enhancing its exploration effectiveness for escaping local minima. Towards applying T-DBaS to safety-critical autonomous robotics, we combine it with Differential Dynamic Programming (DDP), leading to the proposed safe trajectory optimization method T-DBaS-DDP, which inherits the convergence and scalability properties of the solver. The effectiveness of the T-DBaS algorithm is verified on differential drive robot and quadrotor simulations. In addition, we compare against the classical DBaS-DDP as well as Augmented-Lagrangian DDP (AL-DDP) in extensive numerical comparisons that demonstrate the proposed method's competitive advantages. Finally, the applicability of the proposed approach is verified through hardware experiments on the Georgia Tech Robotarium platform.

This paper introduces the Generative Flow Ant Colony Sampler (GFACS), a novel neural-guided meta-heuristic algorithm for combinatorial optimization. GFACS integrates generative flow networks (GFlowNets) with the ant colony optimization (ACO) methodology. GFlowNets, a generative model that learns a constructive policy in combinatorial spaces, enhance ACO by providing an informed prior distribution of decision variables conditioned on input graph instances. Furthermore, we introduce a novel combination of training tricks, including search-guided local exploration, energy normalization, and energy shaping to improve GFACS. Our experimental results demonstrate that GFACS outperforms baseline ACO algorithms in seven CO tasks and is competitive with problem-specific heuristics for vehicle routing problems. The source code is available at \url{//github.com/ai4co/gfacs}.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

北京阿比特科技有限公司