亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Modelling multivariate systems is important for many applications in engineering and operational research. The multivariate distributions under scrutiny usually have no analytic or closed form. Therefore their modelling employs a numerical technique, typically multivariate simulations, which can have very high dimensions. Random Orthogonal Matrix (ROM) simulation is a method that has gained some popularity because of the absence of certain simulation errors. Specifically, it exactly matches a target mean, covariance matrix and certain higher moments with every simulation. This paper extends the ROM simulation algorithm presented by Hanke et al. (2017), hereafter referred to as HPSW, which matches the target mean, covariance matrix and Kollo skewness vector exactly. Our first contribution is to establish necessary and sufficient conditions for the HPSW algorithm to work. Our second contribution is to develop a general approach for constructing admissible values in the HPSW. Our third theoretical contribution is to analyse the effect of multivariate sample concatenation on the target Kollo skewness. Finally, we illustrate the extensions we develop here using a simulation study.

相關內容

We develop a dimension reduction framework for data consisting of matrices of counts. Our model is based on assuming the existence of a small amount of independent normal latent variables that drive the dependency structure of the observed data, and can be seen as the exact discrete analogue for a contaminated low-rank matrix normal model. We derive estimators for the model parameters and establish their root-$n$ consistency. An extension of a recent proposal from the literature is used to estimate the latent dimension of the model. Additionally, a sparsity-accommodating variant of the model is considered. The method is shown to surpass both its vectorization-based competitors and matrix methods assuming the continuity of the data distribution in analysing simulated data and real abundance data.

We show that the Riemannian Gaussian distributions on symmetric spaces, introduced in recent years, are of standard random matrix type. We exploit this to compute analytically marginals of the probability density functions. This can be done fully, using Stieltjes-Wigert orthogonal polynomials, for the case of the space of Hermitian matrices, where the distributions have already appeared in the physics literature. For the case when the symmetric space is the space of $m \times m$ symmetric positive definite matrices, we show how to efficiently compute by evaluating Pfaffians at specific values of $m$. Equivalently, we can obtain the same result by constructing specific skew orthogonal polynomials with regards to the log-normal weight function (skew Stieltjes-Wigert polynomials). Other symmetric spaces are studied and the same type of result is obtained for the quaternionic case. Moreover, we show how the probability density functions are a particular case of diffusion reproducing kernels of the Karlin-McGregor type, describing non-intersecting Brownian motions, which are also diffusion processes in the Weyl chamber of Lie groups.

Consider the task of matrix estimation in which a dataset $X \in \mathbb{R}^{n\times m}$ is observed with sparsity $p$, and we would like to estimate $\mathbb{E}[X]$, where $\mathbb{E}[X_{ui}] = f(\alpha_u, \beta_i)$ for some Holder smooth function $f$. We consider the setting where the row covariates $\alpha$ are unobserved yet the column covariates $\beta$ are observed. We provide an algorithm and accompanying analysis which shows that our algorithm improves upon naively estimating each row separately when the number of rows is not too small. Furthermore when the matrix is moderately proportioned, our algorithm achieves the minimax optimal nonparametric rate of an oracle algorithm that knows the row covariates. In simulated experiments we show our algorithm outperforms other baselines in low data regimes.

Pattern matching is a fundamental process in almost every scientific domain. The problem involves finding the positions of a given pattern (usually of short length) in a reference stream of data (usually of large length). The matching can be as an exact or as an approximate (inexact) matching. Exact matching is to search for the pattern without allowing for mismatches (or insertions and deletions) of one or more characters in the pattern), while approximate matching is the opposite. For exact matching, several data structures that can be built in linear time and space are used and in practice nowadays. For approximate matching, the solutions proposed to solve this matching are non-linear and currently impractical. In this paper, we designed and implemented a structure that can be built in linear time and space and solve the approximate matching problem in ($O(m + \frac {log_\Sigma ^kn}{k!} + occ$) search costs, where $m$ is the length of the pattern, $n$ is the length of the reference, and $k$ is the number of tolerated mismatches (and insertion and deletions).

In the first part of this work, we develop a novel scheme for solving nonparametric regression problems. That is the approximation of possibly low regular and noised functions from the knowledge of their approximate values given at some random points. Our proposed scheme is based on the use of the pseudo-inverse of a random projection matrix, combined with some specific properties of the Jacobi polynomials system, as well as some properties of positive definite random matrices. This scheme has the advantages to be stable, robust, accurate and fairly fast in terms of execution time. In particular, we provide an $L_2$ as well as an $L_2-$risk errors of our proposed nonparametric regression estimator. Moreover and unlike most of the existing nonparametric regression estimators, no extra regularization step is required by our proposed estimator. Although, this estimator is initially designed to work with random sampling set of uni-variate i.i.d. random variables following a Beta distribution, we show that it is still works for a wide range of sampling distribution laws. Moreover, we briefly describe how our estimator can be adapted in order to handle the multivariate case of random sampling sets. In the second part of this work, we extend the random pseudo-inverse scheme technique to build a stable and accurate estimator for solving linear functional regression (LFR) problems. A dyadic decomposition approach is used to construct this last stable estimator for the LFR problem. Alaso, we give an $L_2-$risk error of our proposed LFR estimator. Finally, the performance of the two proposed estimators are illustrated by various numerical simulations. In particular, a real dataset is used to illustrate the performance of our nonparametric regression estimator.

Generative models have been successfully used for generating realistic signals. Because the likelihood function is typically intractable in most of these models, the common practice is to use "implicit" models that avoid likelihood calculation. However, it is hard to obtain theoretical guarantees for such models. In particular, it is not understood when they can globally optimize their non-convex objectives. Here we provide such an analysis for the case of Maximum Mean Discrepancy (MMD) learning of generative models. We prove several optimality results, including for a Gaussian distribution with low rank covariance (where likelihood is inapplicable) and a mixture of Gaussians. Our analysis shows that that the MMD optimization landscape is benign in these cases, and therefore gradient based methods will globally minimize the MMD objective.

We study the robust recovery of a low-rank matrix from sparsely and grossly corrupted Gaussian measurements, with no prior knowledge on the intrinsic rank. We consider the robust matrix factorization approach. We employ a robust $\ell_1$ loss function and deal with the challenge of the unknown rank by using an overspecified factored representation of the matrix variable. We then solve the associated nonconvex nonsmooth problem using a subgradient method with diminishing stepsizes. We show that under a regularity condition on the sensing matrices and corruption, which we call restricted direction preserving property (RDPP), even with rank overspecified, the subgradient method converges to the exact low-rank solution at a sublinear rate. Moreover, our result is more general in the sense that it automatically speeds up to a linear rate once the factor rank matches the unknown rank. On the other hand, we show that the RDPP condition holds under generic settings, such as Gaussian measurements under independent or adversarial sparse corruptions, where the result could be of independent interest. Both the exact recovery and the convergence rate of the proposed subgradient method are numerically verified in the overspecified regime. Moreover, our experiment further shows that our particular design of diminishing stepsize effectively prevents overfitting for robust recovery under overparameterized models, such as robust matrix sensing and learning robust deep image prior. This regularization effect is worth further investigation.

Let $\mathbf{W}\in\mathbb{C}^{n\times n}$ be a {\it single-spiked} Wishart matrix in the class $\mathbf{W}\sim \mathcal{CW}_n(m,\mathbf{I}_n+ \theta \mathbf{v}\mathbf{v}^\dagger) $ with $m\geq n$, where $\mathbf{I}_n$ is the $n\times n$ identity matrix, $\mathbf{v}\in\mathbb{C}^{n\times 1}$ is an arbitrary vector with unit Euclidean norm, $\theta\geq 0$ is a non-random parameter, and $(\cdot)^\dagger$ represents the conjugate-transpose operator. Let $\mathbf{u}_1$ and $\mathbf{u}_n$ denote the eigenvectors corresponding to the samllest and the largest eigenvalues of $\mathbf{W}$, respectively. This paper investigates the probability density function (p.d.f.) of the random quantity $Z_{\ell}^{(n)}=\left|\mathbf{v}^\dagger\mathbf{u}_\ell\right|^2\in(0,1)$ for $\ell=1,n$. In particular, we derive a finite dimensional closed-form p.d.f. for $Z_{1}^{(n)}$ which is amenable to asymptotic analysis as $m,n$ diverges with $m-n$ fixed. It turns out that, in this asymptotic regime, the scaled random variable $nZ_{1}^{(n)}$ converges in distribution to $\chi^2_2/2(1+\theta)$, where $\chi_2^2$ denotes a chi-squared random variable with two degrees of freedom. This reveals that $\mathbf{u}_1$ can be used to infer information about the spike. On the other hand, the finite dimensional p.d.f. of $Z_{n}^{(n)}$ is expressed as a double integral in which the integrand contains a determinant of a square matrix of dimension $(n-2)$. Although a simple solution to this double integral seems intractable, for special configurations of $n=2,3$, and $4$, we obtain closed-form expressions.

The objective of this work is to quantify the uncertainty in probability of failure estimates resulting from incomplete knowledge of the probability distributions for the input random variables. We propose a framework that couples the widely used Subset simulation (SuS) with Bayesian/information theoretic multi-model inference. The process starts with data used to infer probability distributions for the model inputs. Often such data sets are small. Multi-model inference is used to assess uncertainty associated with the model-form and parameters of these random variables in the form of model probabilities and the associated joint parameter probability densities. A sampling procedure is used to construct a set of equally probable candidate probability distributions and an optimal importance sampling distribution is determined analytically from this set. Subset simulation is then performed using this optimal sampling density and the resulting conditional probabilities are re-weighted using importance sampling. The result of this process are empirical probability distributions of failure probabilities that provide direct estimates of the uncertainty in failure probability estimates that result from inference on small data sets. The method is demonstrated to be both computationally efficient -- requiring only a single subset simulation and nominal cost of sample re-weighting -- and to provide reasonable estimates of the uncertainty in failure probabilities.

We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.

北京阿比特科技有限公司