Deep Reinforcement Learning (DRL) agents frequently face challenges in adapting to tasks outside their training distribution, including issues with over-fitting, catastrophic forgetting and sample inefficiency. Although the application of adapters has proven effective in supervised learning contexts such as natural language processing and computer vision, their potential within the DRL domain remains largely unexplored. This paper delves into the integration of adapters in reinforcement learning, presenting an innovative adaptation strategy that demonstrates enhanced training efficiency and improvement of the base-agent, experimentally in the nanoRTS environment, a real-time strategy (RTS) game simulation. Our proposed universal approach is not only compatible with pre-trained neural networks but also with rule-based agents, offering a means to integrate human expertise.
Effectively explaining decisions of black-box machine learning models is critical to responsible deployment of AI systems that rely on them. Recognizing their importance, the field of explainable AI (XAI) provides several techniques to generate these explanations. Yet, there is relatively little emphasis on the user (the explainee) in this growing body of work and most XAI techniques generate "one-size-fits-all" explanations. To bridge this gap and achieve a step closer towards human-centered XAI, we present I-CEE, a framework that provides Image Classification Explanations tailored to User Expertise. Informed by existing work, I-CEE explains the decisions of image classification models by providing the user with an informative subset of training data (i.e., example images), corresponding local explanations, and model decisions. However, unlike prior work, I-CEE models the informativeness of the example images to depend on user expertise, resulting in different examples for different users. We posit that by tailoring the example set to user expertise, I-CEE can better facilitate users' understanding and simulatability of the model. To evaluate our approach, we conduct detailed experiments in both simulation and with human participants (N = 100) on multiple datasets. Experiments with simulated users show that I-CEE improves users' ability to accurately predict the model's decisions (simulatability) compared to baselines, providing promising preliminary results. Experiments with human participants demonstrate that our method significantly improves user simulatability accuracy, highlighting the importance of human-centered XAI
Federated Learning (FL) is a promising distributed learning mechanism which still faces two major challenges, namely privacy breaches and system efficiency. In this work, we reconceptualize the FL system from the perspective of network information theory, and formulate an original FL communication framework, FedNC, which is inspired by Network Coding (NC). The main idea of FedNC is mixing the information of the local models by making random linear combinations of the original parameters, before uploading for further aggregation. Due to the benefits of the coding scheme, both theoretical and experimental analysis indicate that FedNC improves the performance of traditional FL in several important ways, including security, efficiency, and robustness. To the best of our knowledge, this is the first framework where NC is introduced in FL. As FL continues to evolve within practical network frameworks, more variants can be further designed based on FedNC.
Large Language Models (LLMs) are attracting significant research attention due to their instruction-following abilities, allowing users and developers to leverage LLMs for a variety of tasks. However, LLMs are vulnerable to prompt-injection attacks: a class of attacks that hijack the model's instruction-following abilities, changing responses to prompts to undesired, possibly malicious ones. In this work, we introduce Jatmo, a method for generating task-specific models resilient to prompt-injection attacks. Jatmo leverages the fact that LLMs can only follow instructions once they have undergone instruction tuning. It harnesses a teacher instruction-tuned model to generate a task-specific dataset, which is then used to fine-tune a base model (i.e., a non-instruction-tuned model). Jatmo only needs a task prompt and a dataset of inputs for the task: it uses the teacher model to generate outputs. For situations with no pre-existing datasets, Jatmo can use a single example, or in some cases none at all, to produce a fully synthetic dataset. Our experiments on seven tasks show that Jatmo models provide similar quality of outputs on their specific task as standard LLMs, while being resilient to prompt injections. The best attacks succeeded in less than 0.5% of cases against our models, versus 87% success rate against GPT-3.5-Turbo. We release Jatmo at //github.com/wagner-group/prompt-injection-defense.
Large Language Models (LLMs) have showcased impressive capabilities in handling straightforward programming tasks. However, their performance tends to falter when confronted with more challenging programming problems. We observe that conventional models often generate solutions as monolithic code blocks, restricting their effectiveness in tackling intricate questions. To overcome this limitation, we present Modular-of-Thought Coder (MoTCoder). We introduce a pioneering framework for MoT instruction tuning, designed to promote the decomposition of tasks into logical sub-tasks and sub-modules. Our investigations reveal that, through the cultivation and utilization of sub-modules, MoTCoder significantly improves both the modularity and correctness of the generated solutions, leading to substantial relative pass@1 improvements of 12.9% on APPS and 9.43% on CodeContests. Our codes are available at //github.com/dvlab-research/MoTCoder.
Generative Pre-trained Transformer (GPT) models have exhibited exciting progress in their capabilities, capturing the interest of practitioners and the public alike. Yet, while the literature on the trustworthiness of GPT models remains limited, practitioners have proposed employing capable GPT models for sensitive applications such as healthcare and finance -- where mistakes can be costly. To this end, this work proposes a comprehensive trustworthiness evaluation for large language models with a focus on GPT-4 and GPT-3.5, considering diverse perspectives -- including toxicity, stereotype bias, adversarial robustness, out-of-distribution robustness, robustness on adversarial demonstrations, privacy, machine ethics, and fairness. Based on our evaluations, we discover previously unpublished vulnerabilities to trustworthiness threats. For instance, we find that GPT models can be easily misled to generate toxic and biased outputs and leak private information in both training data and conversation history. We also find that although GPT-4 is usually more trustworthy than GPT-3.5 on standard benchmarks, GPT-4 is more vulnerable given jailbreaking system or user prompts, potentially because GPT-4 follows (misleading) instructions more precisely. Our work illustrates a comprehensive trustworthiness evaluation of GPT models and sheds light on the trustworthiness gaps. Our benchmark is publicly available at //decodingtrust.github.io/; our dataset can be previewed at //huggingface.co/datasets/AI-Secure/DecodingTrust; a concise version of this work is at //openreview.net/pdf?id=kaHpo8OZw2.
When exploring the development of Artificial General Intelligence (AGI), a critical task for these models involves interpreting and processing information from multiple image inputs. However, Large Multimodal Models (LMMs) encounter two issues in such scenarios: (1) a lack of fine-grained perception, and (2) a tendency to blend information across multiple images. We first extensively investigate the capability of LMMs to perceive fine-grained visual details when dealing with multiple input images. The research focuses on two aspects: first, image-to-image matching (to evaluate whether LMMs can effectively reason and pair relevant images), and second, multi-image-to-text matching (to assess whether LMMs can accurately capture and summarize detailed image information). We conduct evaluations on a range of both open-source and closed-source large models, including GPT-4V, Gemini, OpenFlamingo, and MMICL. To enhance model performance, we further develop a Contrastive Chain-of-Thought (CoCoT) prompting approach based on multi-input multimodal models. This method requires LMMs to compare the similarities and differences among multiple image inputs, and then guide the models to answer detailed questions about multi-image inputs based on the identified similarities and differences. Our experimental results showcase CoCoT's proficiency in enhancing the multi-image comprehension capabilities of large multimodal models.
Unmanned Aerial Vehicles (UAVs) have become pivotal in domains spanning military, agriculture, surveillance, and logistics, revolutionizing data collection and environmental interaction. With the advancement in drone technology, there is a compelling need to develop a holistic methodology for designing UAVs. This research focuses on establishing a procedure encompassing conceptual design, use of composite materials, weight optimization, stability analysis, avionics integration, advanced manufacturing, and incorporation of autonomous payload delivery through object detection models tailored to satisfy specific applications while maintaining cost efficiency. The study conducts a comparative assessment of potential composite materials and various quadcopter frame configurations. The novel features include a payload-dropping mechanism, a unibody arm fixture, and the utilization of carbon-fibre-balsa composites. A quadcopter is designed and analyzed using the proposed methodology, followed by its fabrication using additive manufacturing and vacuum bagging techniques. A computer vision-based deep learning model enables precise delivery of payloads by autonomously detecting targets.
Multimodality Representation Learning, as a technique of learning to embed information from different modalities and their correlations, has achieved remarkable success on a variety of applications, such as Visual Question Answering (VQA), Natural Language for Visual Reasoning (NLVR), and Vision Language Retrieval (VLR). Among these applications, cross-modal interaction and complementary information from different modalities are crucial for advanced models to perform any multimodal task, e.g., understand, recognize, retrieve, or generate optimally. Researchers have proposed diverse methods to address these tasks. The different variants of transformer-based architectures performed extraordinarily on multiple modalities. This survey presents the comprehensive literature on the evolution and enhancement of deep learning multimodal architectures to deal with textual, visual and audio features for diverse cross-modal and modern multimodal tasks. This study summarizes the (i) recent task-specific deep learning methodologies, (ii) the pretraining types and multimodal pretraining objectives, (iii) from state-of-the-art pretrained multimodal approaches to unifying architectures, and (iv) multimodal task categories and possible future improvements that can be devised for better multimodal learning. Moreover, we prepare a dataset section for new researchers that covers most of the benchmarks for pretraining and finetuning. Finally, major challenges, gaps, and potential research topics are explored. A constantly-updated paperlist related to our survey is maintained at //github.com/marslanm/multimodality-representation-learning.
Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.