We introduce TurboGP, a Genetic Programming (GP) library fully written in Python and specifically designed for machine learning tasks. TurboGP implements modern features not available in other GP implementations, such as island and cellular population schemes, different types of genetic operations (migration, protected crossovers), online learning, among other features. TurboGP's most distinctive characteristic is its native support for different types of GP nodes to allow different abstraction levels, this makes TurboGP particularly useful for processing a wide variety of data sources.
We introduce YATO, an open-source, easy-to-use toolkit for text analysis with deep learning. Different from existing heavily engineered toolkits and platforms, YATO is lightweight and user-friendly for researchers from cross-disciplinary areas. Designed in a hierarchical structure, YATO supports free combinations of three types of widely used features including 1) traditional neural networks (CNN, RNN, etc.); 2) pre-trained language models (BERT, RoBERTa, ELECTRA, etc.); and 3) user-customized neural features via a simple configurable file. Benefiting from the advantages of flexibility and ease of use, YATO can facilitate fast reproduction and refinement of state-of-the-art NLP models, and promote the cross-disciplinary applications of NLP techniques. The code, examples, and documentation are publicly available at //github.com/jiesutd/YATO. A demo video is also available at //www.youtube.com/playlist?list=PLJ0mhzMcRuDUlTkzBfAftOqiJRxYTTjXH.
HyperNetX (HNX) is an open source Python library for the analysis and visualization of complex network data modeled as hypergraphs. Initially released in 2019, HNX facilitates exploratory data analysis of complex networks using algebraic topology, combinatorics, and generalized hypergraph and graph theoretical methods on structured data inputs. With its 2023 release, the library supports attaching metadata, numerical and categorical, to nodes (vertices) and hyperedges, as well as to node-hyperedge pairings (incidences). HNX has a customizable Matplotlib-based visualization module as well as HypernetX-Widget, its JavaScript addon for interactive exploration and visualization of hypergraphs within Jupyter Notebooks. Both packages are available on GitHub and PyPI. With a growing community of users and collaborators, HNX has become a preeminent tool for hypergraph analysis.
The Conformer has become the most popular encoder model for automatic speech recognition (ASR). It adds convolution modules to a transformer to learn both local and global dependencies. In this work we describe a faster, more memory-efficient, and better-performing transformer, called Zipformer. Modeling changes include: 1) a U-Net-like encoder structure where middle stacks operate at lower frame rates; 2) reorganized block structure with more modules, within which we re-use attention weights for efficiency; 3) a modified form of LayerNorm called BiasNorm allows us to retain some length information; 4) new activation functions SwooshR and SwooshL work better than Swish. We also propose a new optimizer, called ScaledAdam, which scales the update by each tensor's current scale to keep the relative change about the same, and also explictly learns the parameter scale. It achieves faster convergence and better performance than Adam. Extensive experiments on LibriSpeech, Aishell-1, and WenetSpeech datasets demonstrate the effectiveness of our proposed Zipformer over other state-of-the-art ASR models. Our code is publicly available at //github.com/k2-fsa/icefall.
Despite deep learning (DL) has achieved remarkable progress in various domains, the DL models are still prone to making mistakes. This issue necessitates effective debugging tools for DL practitioners to interpret the decision-making process within the networks. However, existing debugging methods often demand extra data or adjustments to the decision process, limiting their applicability. To tackle this problem, we present NeuroInspect, an interpretable neuron-based debugging framework with three key stages: counterfactual explanations, feature visualizations, and false correlation mitigation. Our debugging framework first pinpoints neurons responsible for mistakes in the network and then visualizes features embedded in the neurons to be human-interpretable. To provide these explanations, we introduce CLIP-Illusion, a novel feature visualization method that generates images representing features conditioned on classes to examine the connection between neurons and the decision layer. We alleviate convoluted explanations of the conventional visualization approach by employing class information, thereby isolating mixed properties. This process offers more human-interpretable explanations for model errors without altering the trained network or requiring additional data. Furthermore, our framework mitigates false correlations learned from a dataset under a stochastic perspective, modifying decisions for the neurons considered as the main causes. We validate the effectiveness of our framework by addressing false correlations and improving inferences for classes with the worst performance in real-world settings. Moreover, we demonstrate that NeuroInspect helps debug the mistakes of DL models through evaluation for human understanding. The code is openly available at //github.com/yeongjoonJu/NeuroInspect.
Most current Event Extraction (EE) methods focus on the high-resource scenario, which requires a large amount of annotated data and can hardly be applied to low-resource domains. To address EE more effectively with limited resources, we propose the Demonstration-enhanced Schema-guided Generation (DemoSG) model, which benefits low-resource EE from two aspects: Firstly, we propose the demonstration-based learning paradigm for EE to fully use the annotated data, which transforms them into demonstrations to illustrate the extraction process and help the model learn effectively. Secondly, we formulate EE as a natural language generation task guided by schema-based prompts, thereby leveraging label semantics and promoting knowledge transfer in low-resource scenarios. We conduct extensive experiments under in-domain and domain adaptation low-resource settings on three datasets, and study the robustness of DemoSG. The results show that DemoSG significantly outperforms current methods in low-resource scenarios.
We present a versatile open-source pipeline for simulating inhomogeneous reaction-diffusion processes in highly resolved, image-based geometries of porous media with reactive boundaries. Resolving realistic pore-scale geometries in numerical models is challenging and computationally demanding, as the scale differences between the sizes of the interstitia and the whole system can lead to prohibitive memory requirements. The present pipeline combines a level-set method with geometry-adapted sparse block grids on GPUs to efficiently simulate reaction-diffusion processes in image-based geometries. We showcase the method by applying it to fertilizer diffusion in soil, heat transfer in porous ceramics, and determining effective diffusion coefficients and tortuosity. The present approach enables solving reaction-diffusion partial differential equations in real-world geometries applicable to porous media across fields such as engineering, environmental science, and biology.
Natural language processing (NLP) has made significant progress for well-resourced languages such as English but lagged behind for low-resource languages like Setswana. This paper addresses this gap by presenting PuoBERTa, a customised masked language model trained specifically for Setswana. We cover how we collected, curated, and prepared diverse monolingual texts to generate a high-quality corpus for PuoBERTa's training. Building upon previous efforts in creating monolingual resources for Setswana, we evaluated PuoBERTa across several NLP tasks, including part-of-speech (POS) tagging, named entity recognition (NER), and news categorisation. Additionally, we introduced a new Setswana news categorisation dataset and provided the initial benchmarks using PuoBERTa. Our work demonstrates the efficacy of PuoBERTa in fostering NLP capabilities for understudied languages like Setswana and paves the way for future research directions.
Deep neural network based recommendation systems have achieved great success as information filtering techniques in recent years. However, since model training from scratch requires sufficient data, deep learning-based recommendation methods still face the bottlenecks of insufficient data and computational inefficiency. Meta-learning, as an emerging paradigm that learns to improve the learning efficiency and generalization ability of algorithms, has shown its strength in tackling the data sparsity issue. Recently, a growing number of studies on deep meta-learning based recommenddation systems have emerged for improving the performance under recommendation scenarios where available data is limited, e.g. user cold-start and item cold-start. Therefore, this survey provides a timely and comprehensive overview of current deep meta-learning based recommendation methods. Specifically, we propose a taxonomy to discuss existing methods according to recommendation scenarios, meta-learning techniques, and meta-knowledge representations, which could provide the design space for meta-learning based recommendation methods. For each recommendation scenario, we further discuss technical details about how existing methods apply meta-learning to improve the generalization ability of recommendation models. Finally, we also point out several limitations in current research and highlight some promising directions for future research in this area.
We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.
Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.