In this paper, we derive explicit second-order necessary and sufficient optimality conditions of a local minimizer to an optimal control problem for a quasilinear second-order partial differential equation with a piecewise smooth but not differentiable nonlinearity in the leading term. The key argument rests on the analysis of level sets of the state. Specifically, we show that if a function vanishes on the boundary and its the gradient is different from zero on a level set, then this set decomposes into finitely many closed simple curves. Moreover, the level sets depend continuously on the functions defining these sets. We also prove the continuity of the integrals on the level sets. In particular, Green's first identity is shown to be applicable on an open set determined by two functions with nonvanishing gradients. In the second part to this paper, the explicit sufficient second-order conditions will be used to derive error estimates for a finite-element discretization of the control problem.
We consider the problem of online interval scheduling on a single machine, where intervals arrive online in an order chosen by an adversary, and the algorithm must output a set of non-conflicting intervals. Traditionally in scheduling theory, it is assumed that intervals arrive in order of increasing start times. We drop that assumption and allow for intervals to arrive in any possible order. We call this variant any-order interval selection (AOIS). We assume that some online acceptances can be revoked, but a feasible solution must always be maintained. For unweighted intervals and deterministic algorithms, this problem is unbounded. Under the assumption that there are at most $k$ different interval lengths, we give a simple algorithm that achieves a competitive ratio of $2k$ and show that it is optimal amongst deterministic algorithms, and a restricted class of randomized algorithms we call memoryless, contributing to an open question by Adler and Azar 2003; namely whether a randomized algorithm without access to history can achieve a constant competitive ratio. We connect our model to the problem of call control on the line, and show how the algorithms of Garay et al. 1997 can be applied to our setting, resulting in an optimal algorithm for the case of proportional weights. We also discuss the case of intervals with arbitrary weights, and show how to convert the single-length algorithm of Fung et al. 2014 into a classify and randomly select algorithm that achieves a competitive ratio of 2k. Finally, we consider the case of intervals arriving in a random order, and show that for single-lengthed instances, a one-directional algorithm (i.e. replacing intervals in one direction), is the only deterministic memoryless algorithm that can possibly benefit from random arrivals. Finally, we briefly discuss the case of intervals with arbitrary weights.
This paper focuses on the study of the order of power series that are linear combinations of a given finite set of power series. The order of a formal power series, known as $\textrm{ord}(f)$, is defined as the minimum exponent of $x$ that has a non-zero coefficient in $f(x)$. Our first result is that the order of the Wronskian of these power series is equivalent up to a polynomial factor, to the maximum order which occurs in the linear combination of these power series. This implies that the Wronskian approach used in (Kayal and Saha, TOCT'2012) to upper bound the order of sum of square roots is optimal up to a polynomial blowup. We also demonstrate similar upper bounds, similar to those of (Kayal and Saha, TOCT'2012), for the order of power series in a variety of other scenarios. We also solve a special case of the inequality testing problem outlined in (Etessami et al., TOCT'2014). In the second part of the paper, we study the equality variant of the sum of square roots problem, which is decidable in polynomial time due to (Bl\"omer, FOCS'1991). We investigate a natural generalization of this problem when the input integers are given as straight line programs. Under the assumption of the Generalized Riemann Hypothesis (GRH), we show that this problem can be reduced to the so-called ``one dimensional'' variant. We identify the key mathematical challenges for solving this ``one dimensional'' variant.
The utilization of renewable energy technologies, particularly hydrogen, has seen a boom in interest and has spread throughout the world. Ethanol steam reformation is one of the primary methods capable of producing hydrogen efficiently and reliably. This paper provides an in-depth study of the reformulated system both theoretically and numerically, as well as a plan to explore the possibility of converting the system into its conservation form. Lastly, we offer an overview of several numerical approaches for solving the general first-order quasi-linear hyperbolic equation to the particular model for ethanol steam reforming (ESR). We conclude by presenting some results that would enable the usage of these ODE/PDE solvers to be used in non-linear model predictive control (NMPC) algorithms and discuss the limitations of our approach and directions for future work.
In online reinforcement learning (RL), instead of employing standard structural assumptions on Markov decision processes (MDPs), using a certain coverage condition (original from offline RL) is enough to ensure sample-efficient guarantees (Xie et al. 2023). In this work, we focus on this new direction by digging more possible and general coverage conditions, and study the potential and the utility of them in efficient online RL. We identify more concepts, including the $L^p$ variant of concentrability, the density ratio realizability, and trade-off on the partial/rest coverage condition, that can be also beneficial to sample-efficient online RL, achieving improved regret bound. Furthermore, if exploratory offline data are used, under our coverage conditions, both statistically and computationally efficient guarantees can be achieved for online RL. Besides, even though the MDP structure is given, e.g., linear MDP, we elucidate that, good coverage conditions are still beneficial to obtain faster regret bound beyond $\widetilde{O}(\sqrt{T})$ and even a logarithmic order regret. These results provide a good justification for the usage of general coverage conditions in efficient online RL.
We consider evolutionary systems, i.e. systems of linear partial differential equations arising from the mathematical physics. For these systems there exists a general solution theory in exponentially weighted spaces which can be exploited in the analysis of numerical methods. The numerical method considered in this paper is a discontinuous Galerkin method in time combined with a conforming Galerkin method in space. Building on our recent paper, we improve some of the results, study the dependence of the numerical solution on the weight-parameter, consider a reformulation and post-processing of its numerical solution. As a by-product we provide error estimates for the dG-C0 method. Numerical simulations support the theoretical findings.
This paper proposes a new approach to identifying the effective cointegration rank in high-dimensional unit-root (HDUR) time series from a prediction perspective using reduced-rank regression. For a HDUR process $\mathbf{x}_t\in \mathbb{R}^N$ and a stationary series $\mathbf{y}_t\in \mathbb{R}^p$ of interest, our goal is to predict future values of $\mathbf{y}_t$ using $\mathbf{x}_t$ and lagged values of $\mathbf{y}_t$. The proposed framework consists of a two-step estimation procedure. First, the Principal Component Analysis is used to identify all cointegrating vectors of $\mathbf{x}_t$. Second, the co-integrated stationary series are used as regressors, together with some lagged variables of $\mathbf{y}_t$, to predict $\mathbf{y}_t$. The estimated reduced rank is then defined as the effective cointegration rank of $\mathbf{x}_t$. Under the scenario that the autoregressive coefficient matrices are sparse (or of low-rank), we apply the Least Absolute Shrinkage and Selection Operator (or the reduced-rank techniques) to estimate the autoregressive coefficients when the dimension involved is high. Theoretical properties of the estimators are established under the assumptions that the dimensions $p$ and $N$ and the sample size $T \to \infty$. Both simulated and real examples are used to illustrate the proposed framework, and the empirical application suggests that the proposed procedure fares well in predicting stock returns.
Here we consider a problem of multiple measurement vector (MMV) compressed sensing with multiple signal sources. The observation model is motivated by the application of {\em unsourced random access} in wireless cell-free MIMO (multiple-input-multiple-output) networks. We present a novel (and rigorous) high-dimensional analysis of the AMP (approximate message passing) algorithm devised for the model. As the system dimensions in the order, say $\mathcal O(L)$, tend to infinity, we show that the empirical dynamical order parameters -- describing the dynamics of the AMP -- converge to deterministic limits (described by a state-evolution equation) with the convergence rate $\mathcal O(L^{-\frac 1 2})$. Furthermore, we have shown the asymptotic consistency of the AMP analysis with the replica-symmetric calculation of the static problem. In addition, we provide some interesting aspects on the unsourced random access (or initial access) for cell-free systems, which is the application motivating the algorithm.
Monadic Second-Order Logic (MSO) extends First-Order Logic (FO) with variables ranging over sets and quantifications over those variables. We introduce and study Monadic Tree Logic (MTL), a fragment of MSO interpreted on infinite-tree models, where the sets over which the variables range are arbitrary subtrees of the original model. We analyse the expressiveness of MTL compared with variants of MSO and MPL, namely MSO with quantifications over paths. We also discuss the connections with temporal logics, by providing non-trivial fragments of the Graded {\mu}-Calculus that can be embedded into MTL and by showing that MTL is enough to encode temporal logics for reasoning about strategies with FO-definable goals.
This paper discusses the construction of local bounded commuting projections for discrete subcomplexes of the gradgrad complexes in two and three dimensions, which play an important role in the finite element theory of elasticity (2D) and general relativity (3D). The construction first extends the local bounded commuting projections to the discrete de Rham complexes to other discrete complexes. Moreover, the argument also provides a guidance in the design of new discrete gradgrad complexes.
In this paper, some preliminaries about signal flow graph, linear time-invariant system on F(z) and computational complexity are first introduced in detail. In order to synthesize the necessary and sufficient condition on F(z) for a general 2-path problem, the sufficient condition on F(z) or R and necessary conditions on F(z) for a general 2-path problem are secondly analyzed respectively. Moreover, an equivalent sufficient and necessary condition on R whether there exists a general 2-path is deduced in detail. Finally, the computational complexity of the algorithm for this equivalent sufficient and necessary condition is introduced so that it means that the general 2-path problem is a P problem.