亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In tensor eigenvalue problems, one is likely to be more interested in H-eigenvalues of tensors. The largest H-eigenvalue of a nonnegative tensor or of a uniform hypergraph is the spectral radius of the tensor or of the uniform hypergraph. We find upper bounds and lower bounds (interlacing inequalities) for the largest H-eigenvalue of a principal subtensor of a symmetric zero diagonal tensor that is of even order or nonnegative, as well as lower bounds for the largest H-eigenvalue of a uniform hypergraph with some vertices or edges removed. We also investigate similar problems for the least H-eigenvalues. We give examples to verify the sharpness of the bounds or in some cases for uniform hypergraphs, we characterize the equality. Particularly, for a connected linear $k$-uniform hypergraph $G$ with $v\in V(G)$, we give a sharp lower bound for the spectral radius of $G-v$ in terms of the spectral radius of $G$ and the degree of $v$ and characterize the extremal hypergraphs, and show that the maximum spectral radius of the subhypergraphs with one vertex removed is greater than or equal to the spectral radius of the hypergraph minus one, which is attained if and only if it is a Steiner system $S(2,k,n)$.

相關內容

Graph Neural Network (GNN) has demonstrated extraordinary performance in classifying graph properties. However, due to the selection bias of training and testing data (e.g., training on small graphs and testing on large graphs, or training on dense graphs and testing on sparse graphs), distribution deviation is widespread. More importantly, we often observe \emph{hybrid structure distribution shift} of both scale and density, despite of one-sided biased data partition. The spurious correlations over hybrid distribution deviation degrade the performance of previous GNN methods and show large instability among different datasets. To alleviate this problem, we propose \texttt{OOD-GMixup} to jointly manipulate the training distribution with \emph{controllable data augmentation} in metric space. Specifically, we first extract the graph rationales to eliminate the spurious correlations due to irrelevant information. Secondly, we generate virtual samples with perturbation on graph rationale representation domain to obtain potential OOD training samples. Finally, we propose OOD calibration to measure the distribution deviation of virtual samples by leveraging Extreme Value Theory, and further actively control the training distribution by emphasizing the impact of virtual OOD samples. Extensive studies on several real-world datasets on graph classification demonstrate the superiority of our proposed method over state-of-the-art baselines.

Objects are crucial for understanding human-object interactions. By identifying the relevant objects, one can also predict potential future interactions or actions that may occur with these objects. In this paper, we study the problem of Short-Term Object interaction anticipation (STA) and propose NAOGAT (Next-Active-Object Guided Anticipation Transformer), a multi-modal end-to-end transformer network, that attends to objects in observed frames in order to anticipate the next-active-object (NAO) and, eventually, to guide the model to predict context-aware future actions. The task is challenging since it requires anticipating future action along with the object with which the action occurs and the time after which the interaction will begin, a.k.a. the time to contact (TTC). Compared to existing video modeling architectures for action anticipation, NAOGAT captures the relationship between objects and the global scene context in order to predict detections for the next active object and anticipate relevant future actions given these detections, leveraging the objects' dynamics to improve accuracy. One of the key strengths of our approach, in fact, is its ability to exploit the motion dynamics of objects within a given clip, which is often ignored by other models, and separately decoding the object-centric and motion-centric information. Through our experiments, we show that our model outperforms existing methods on two separate datasets, Ego4D and EpicKitchens-100 ("Unseen Set"), as measured by several additional metrics, such as time to contact, and next-active-object localization. The code will be available upon acceptance.

The resolution of near-field beamforming is an important metric to measure how effectively users with different locations can be located. This letter identifies the condition under which the resolution of near-field beamforming is not perfect. This imperfect resolution means that one user's near-field beam can be still useful to other users, which motivates the application of non-orthogonal multiple access (NOMA). Both the analytical and simulation results are developed to demonstrate that those near-field beams preconfigured for legacy users can indeed be used to effectively serve additional NOMA users, which improves the overall connectivity and system throughput.

Proof terms are syntactic expressions that represent computations in term rewriting. They were introduced by Meseguer and exploited by van Oostrom and de Vrijer to study equivalence of reductions in (left-linear) first-order term rewriting systems. We study the problem of extending the notion of proof term to higher-order rewriting, which generalizes the first-order setting by allowing terms with binders and higher-order substitution. In previous works that devise proof terms for higher-order rewriting, such as Bruggink's, it has been noted that the challenge lies in reconciling composition of proof terms and higher-order substitution (\b{eta}-equivalence). This led Bruggink to reject "nested" composition, other than at the outermost level. In this paper, we propose a notion of higher-order proof term we dub rewrites that supports nested composition. We then define two notions of equivalence on rewrites, namely permutation equivalence and projection equivalence, and show that they coincide. We also propose a standardization procedure, that computes a canonical representative of the permutation equivalence class of a rewrite.

We consider a line-of-sight communication link between two holographic surfaces (HoloSs). We provide a closed-form expression for the number of effective degrees of freedom (eDoF), i.e., the number of orthogonal communication modes that can be established between the HoloSs. The framework can be applied to general network deployments beyond the widely studied paraxial setting. This is obtained by utilizing a quartic approximation for the wavefront of the electromagnetic waves, and by proving that the number of eDoF corresponds to an instance of Landau's eigenvalue problem applied to a bandlimited kernel determined by the quartic approximation of the wavefront. The proposed approach overcomes the limitations of the widely utilized parabolic approximation for the wavefront, which provides inaccurate estimates in non-paraxial deployments. We specialize the framework to typical network deployments, and provide analytical expressions for the optimal, according to Kolmogorov's $N$-width criterion, basis functions (communication waveforms) for optimal data encoding and decoding. With the aid of numerical analysis, we validate the accuracy of the closed-form expressions for the number of eDoF and waveforms.

Graphs are commonly used to represent and visualize causal relations. For a small number of variables, this approach provides a succinct and clear view of the scenario at hand. As the number of variables under study increases, the graphical approach may become impractical, and the clarity of the representation is lost. Clustering of variables is a natural way to reduce the size of the causal diagram, but it may erroneously change the essential properties of the causal relations if implemented arbitrarily. We define a specific type of cluster, called transit cluster, that is guaranteed to preserve the identifiability properties of causal effects under certain conditions. We provide a sound and complete algorithm for finding all transit clusters in a given graph and demonstrate how clustering can simplify the identification of causal effects. We also study the inverse problem, where one starts with a clustered graph and looks for extended graphs where the identifiability properties of causal effects remain unchanged. We show that this kind of structural robustness is closely related to transit clusters.

Electronic exams (e-exams) have the potential to substantially reduce the effort required for conducting an exam through automation. Yet, care must be taken to sacrifice neither task complexity nor constructive alignment nor grading fairness in favor of automation. To advance automation in the design and fair grading of (functional programming) e-exams, we introduce the following: A novel algorithm to check Proof Puzzles based on finding correct sequences of proof lines that improves fairness compared to an existing, edit distance based algorithm; an open-source static analysis tool to check source code for task relevant features by traversing the abstract syntax tree; a higher-level language and open-source tool to specify regular expressions that makes creating complex regular expressions less error-prone. Our findings are embedded in a complete experience report on transforming a paper exam to an e-exam. We evaluated the resulting e-exam by analyzing the degree of automation in the grading process, asking students for their opinion, and critically reviewing our own experiences. Almost all tasks can be graded automatically at least in part (correct solutions can almost always be detected as such), the students agree that an e-exam is a fitting examination format for the course but are split on how well they can express their thoughts compared to a paper exam, and examiners enjoy a more time-efficient grading process while the point distribution in the exam results was almost exactly the same compared to a paper exam.

Australia is a leading AI nation with strong allies and partnerships. Australia has prioritised robotics, AI, and autonomous systems to develop sovereign capability for the military. Australia commits to Article 36 reviews of all new means and methods of warfare to ensure weapons and weapons systems are operated within acceptable systems of control. Additionally, Australia has undergone significant reviews of the risks of AI to human rights and within intelligence organisations and has committed to producing ethics guidelines and frameworks in Security and Defence. Australia is committed to OECD's values-based principles for the responsible stewardship of trustworthy AI as well as adopting a set of National AI ethics principles. While Australia has not adopted an AI governance framework specifically for Defence; Defence Science has published 'A Method for Ethical AI in Defence' (MEAID) technical report which includes a framework and pragmatic tools for managing ethical and legal risks for military applications of AI.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司