亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

When an exposure of interest is confounded by unmeasured factors, an instrumental variable (IV) can be used to identify and estimate certain causal contrasts. Identification of the marginal average treatment effect (ATE) from IVs relies on strong untestable structural assumptions. When one is unwilling to assert such structure, IVs can nonetheless be used to construct bounds on the ATE. Famously, Balke and Pearl (1997) proved tight bounds on the ATE for a binary outcome, in a randomized trial with noncompliance and no covariate information. We demonstrate how these bounds remain useful in observational settings with baseline confounders of the IV, as well as randomized trials with measured baseline covariates. The resulting bounds on the ATE are non-smooth functionals, and thus standard nonparametric efficiency theory is not immediately applicable. To remedy this, we propose (1) under a novel margin condition, influence function-based estimators of the bounds that can attain parametric convergence rates when the nuisance functions are modeled flexibly, and (2) estimators of smooth approximations of these bounds. We propose extensions to continuous outcomes, explore finite sample properties in simulations, and illustrate the proposed estimators in a randomized experiment studying the effects of vaccination encouragement on flu-related hospital visits.

相關內容

We present R software packages RobustIV and controlfunctionIV for causal inference with possibly invalid instrumental variables. RobustIV focuses on the linear outcome model. It implements the two-stage hard thresholding method to select valid instrumental variables from a set of candidate instrumental variables and make inferences for the causal effect in both low- and high-dimensional settings. Furthermore, RobustIV implements the high-dimensional endogeneity test and the searching and sampling method, a uniformly valid inference method robust to errors in instrumental variable selection. controlfunctionIV considers the nonlinear outcome model and makes inferences about the causal effect based on the control function method. Our packages are demonstrated using two publicly available economic data sets together with applications to the Framingham Heart Study.

A treatment policy defines when and what treatments are applied to affect some outcome of interest. Data-driven decision-making requires the ability to predict what happens if a policy is changed. Existing methods that predict how the outcome evolves under different scenarios assume that the tentative sequences of future treatments are fixed in advance, while in practice the treatments are determined stochastically by a policy and may depend, for example, on the efficiency of previous treatments. Therefore, the current methods are not applicable if the treatment policy is unknown or a counterfactual analysis is needed. To handle these limitations, we model the treatments and outcomes jointly in continuous time, by combining Gaussian processes and point processes. Our model enables the estimation of a treatment policy from observational sequences of treatments and outcomes, and it can predict the interventional and counterfactual progression of the outcome after an intervention on the treatment policy (in contrast with the causal effect of a single treatment). We show with real-world and semi-synthetic data on blood glucose progression that our method can answer causal queries more accurately than existing alternatives.

We present new results on average causal effects in settings with unmeasured exposure-outcome confounding. Our results are motivated by a class of estimands, e.g., frequently of interest in medicine and public health, that are currently not targeted by standard approaches for average causal effects. We recognize these estimands as queries about the average causal effect of an intervening variable. We anchor our introduction of these estimands in an investigation of the role of chronic pain and opioid prescription patterns in the opioid epidemic, and illustrate how conventional approaches will lead unreplicable estimates with ambiguous policy implications. We argue that our altenative effects are replicable and have clear policy implications, and furthermore are non-parametrically identified by the classical frontdoor formula. As an independent contribution, we derive a new semiparametric efficient estimator of the frontdoor formula with a uniform sample boundedness guarantee. This property is unique among previously-described estimators in its class, and we demonstrate superior performance in finite-sample settings. Theoretical results are applied with data from the National Health and Nutrition Examination Survey.

In some causal inference scenarios, the treatment (i.e. cause) variable is measured inaccurately, for instance in epidemiology or econometrics. Failure to correct for the effect of this measurement error can lead to biased causal effect estimates. Previous research has not studied methods that address this issue from a causal viewpoint while allowing for complex nonlinear dependencies and without assuming access to side information. For such as scenario, this paper proposes a model that assumes a continuous treatment variable which is inaccurately measured. Building on existing results for measurement error models, we prove that our model's causal effect estimates are identifiable, even without knowledge of the measurement error variance or other side information. Our method relies on a deep latent variable model where Gaussian conditionals are parameterized by neural networks, and we develop an amortized importance-weighted variational objective for training the model. Empirical results demonstrate the method's good performance with unknown measurement error. More broadly, our work extends the range of applications where reliable causal inference can be conducted.

In epidemiological studies, participants' disease status is often collected through self-reported outcomes in place of formal medical tests due to budget constraints. However, self-reported outcomes are often subject to measurement errors, and may lead to biased estimates if used in statistical analyses. In this paper, we propose statistical methods to correct for outcome measurement errors in survival analyses with multiple failure types through a reweighting strategy. We also discuss asymptotic properties of the proposed estimators and derive their asymptotic variances. The work is motivated by Conservation of Hearing Study (CHEARS) which aims to evaluate risk factors for hearing loss in the Nurses' Health Studies II (NHS II). We apply the proposed method to adjust for the measurement errors in self-reported hearing outcomes; the analysis results suggest that tinnitus is positively associated with moderate hearing loss at both low or mid and high sound frequencies, while the effects between different frequencies are similar.

Supervised machine learning (ML) and deep learning (DL) algorithms excel at predictive tasks, but it is commonly assumed that they often do so by exploiting non-causal correlations, which may limit both interpretability and generalizability. Here, we show that this trade-off between explanation and prediction is not as deep and fundamental as expected. Whereas ML and DL algorithms will indeed tend to use non-causal features for prediction when fed indiscriminately with all data, it is possible to constrain the learning process of any ML and DL algorithm by selecting features according to Pearl's backdoor adjustment criterion. In such a situation, some algorithms, in particular deep neural networks, can provide near unbiased effect estimates under feature collinearity. Remaining biases are explained by the specific algorithmic structures as well as hyperparameter choice. Consequently, optimal hyperparameter settings are different when tuned for prediction or inference, confirming the general expectation of a trade-off between prediction and explanation. However, the effect of this trade-off is small compared to the effect of a causally constrained feature selection. Thus, once the causal relationship between the features is accounted for, the difference between prediction and explanation may be much smaller than commonly assumed. We also show that such causally constrained models generalize better to new data with altered collinearity structures, suggesting generalization failure may often be due to a lack of causal learning. Our results not only provide a perspective for using ML for inference of (causal) effects but also help to improve the generalizability of fitted ML and DL models to new data.

In randomized clinical trials, adjusting for baseline covariates has been advocated as a way to improve credibility and efficiency for demonstrating and quantifying treatment effects. This article studies the augmented inverse propensity weighted (AIPW) estimator, which is a general form of covariate adjustment that includes approaches using linear and generalized linear models and machine learning models. Under covariate-adaptive randomization, we establish a general theorem that shows a complete picture about the asymptotic normality, efficiency gain, and applicability of AIPW estimators. Based on the general theorem, we provide insights on the conditions for guaranteed efficiency gain and universal applicability under different randomization schemes, which also motivate a joint calibration strategy using some constructed covariates after applying AIPW. We illustrate the application of the general theorem with two examples, the generalized linear model and the machine learning model. We provide the first theoretical justification of using machine learning methods with dependent data under covariate-adaptive randomization. Our methods are implemented in the R package RobinCar.

A very classical problem in statistics is to test the stochastic superiority of one distribution to another. However, many existing approaches are developed for independent samples and, moreover, do not take censored data into account. We develop a new estimand-driven method to compare the effectiveness of two treatments in the context of right-censored survival data with matched pairs. With the help of competing risks techniques, the so-called relative treatment effect is estimated. It quantifies the probability that the individual undergoing the first treatment survives the matched individual undergoing the second treatment. Hypothesis tests and confidence intervals are based on a studentized version of the estimator, where resampling-based inference is established by means of a randomization method. In a simulation study, we found that the developed test exhibits good power, when compared to competitors which are actually testing the simpler null hypothesis of the equality of both marginal survival functions. Finally, we apply the methodology to a well-known benchmark data set from a trial with patients suffering from with diabetic retinopathy.

We study a constructive algorithm that approximates Gateaux derivatives for statistical functionals by finite differencing, with a focus on functionals that arise in causal inference. We study the case where probability distributions are not known a priori but need to be estimated from data. These estimated distributions lead to empirical Gateaux derivatives, and we study the relationships between empirical, numerical, and analytical Gateaux derivatives. Starting with a case study of the interventional mean (average potential outcome), we delineate the relationship between finite differences and the analytical Gateaux derivative. We then derive requirements on the rates of numerical approximation in perturbation and smoothing that preserve the statistical benefits of one-step adjustments, such as rate double robustness. We then study more complicated functionals such as dynamic treatment regimes, the linear-programming formulation for policy optimization in infinite-horizon Markov decision processes, and sensitivity analysis in causal inference. More broadly, we study optimization-based estimators, since this begets a class of estimands where identification via regression adjustment is straightforward but obtaining influence functions under minor variations thereof is not. The ability to approximate bias adjustments in the presence of arbitrary constraints illustrates the usefulness of constructive approaches for Gateaux derivatives. We also find that the statistical structure of the functional (rate double robustness) can permit less conservative rates for finite-difference approximation. This property, however, can be specific to particular functionals; e.g., it occurs for the average potential outcome (hence average treatment effect) but not the infinite-horizon MDP policy value.

Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.

北京阿比特科技有限公司