Mobile applications have become an inseparable part of people's daily life. Nonetheless, the market competition is extremely fierce, and apps lacking recognition among most users are susceptible to market elimination. To this end, developers must swiftly and accurately apprehend the requirements of the wider user base to effectively strategize and promote their apps' orderly and healthy evolution. The rate at which general user requirements are adopted by developers, or user contribution, is a very valuable metric that can be an important tool for app developers or software engineering researchers to measure or gain insight into the evolution of app requirements and predict the evolution of app software. Regrettably, the landscape lacks refined quantitative analysis approaches and tools for this pivotal indicator. To address this problem, this paper exploratively proposes a quantitative analysis approach based on the temporal correlation perception that exists in the app update log and user reviews, which provides a feasible solution for quantitatively obtaining the user contribution. The main idea of this scheme is to consider valid user reviews as user requirements and app update logs as developer responses, and to mine and analyze the pairwise and chronological relationships existing between the two by text computing, thus constructing a feasible approach for quantitatively calculating user contribution. To demonstrate the feasibility of the approach, this paper collects data from four Chinese apps in the App Store in mainland China and one English app in the U.S. region, including 2,178 update logs and 4,236,417 user reviews, and from the results of the experiment, it was found that 16.6%-43.2% of the feature of these apps would be related to the drive from the online popular user requirements.
Multiobjective optimization is a hot topic in the artificial intelligence and operations research communities. The design and development of multiobjective methods is a frequent task for researchers and practitioners. As a result of this vibrant activity, a myriad of techniques have been proposed in the literature to date, demonstrating a significant effectiveness for dealing with situations coming from a wide range of real-world areas. This paper is focused on a multiobjective problem related to optimizing Infrastructure-as-Code deployment configurations. The system implemented for solving this problem has been coined as IaC Optimizer Platform (IOP). Despite the fact that a prototypical version of the IOP has been introduced in the literature before, a deeper analysis focused on the resolution of the problem is needed, in order to determine which is the most appropriate multiobjective method for embedding in the IOP. The main motivation behind the analysis conducted in this work is to enhance the IOP performance as much as possible. This is a crucial aspect of this system, deeming that it will be deployed in a real environment, as it is being developed as part of a H2020 European project. Going deeper, we resort in this paper to nine different evolutionary computation-based multiobjective algorithms. For assessing the quality of the considered solvers, 12 different problem instances have been generated based on real-world settings. Results obtained by each method after 10 independent runs have been compared using Friedman's non-parametric tests. Findings reached from the tests carried out lad to the creation of a multi-algorithm system, capable of applying different techniques according to the user's needs.
The network scale-up method (NSUM) is a cost-effective approach to estimating the size or prevalence of a group of people that is hard to reach through a standard survey. The basic NSUM involves two steps: estimating respondents' degrees by one of various methods (in this paper we focus on the probe group method which uses the number of people a respondent knows in various groups of known size), and estimating the prevalence of the hard-to-reach population of interest using respondents' estimated degrees and the number of people they report knowing in the hard-to-reach group. Each of these two steps involves taking either an average of ratios or a ratio of averages. Using the ratio of averages for each step has so far been the most common approach. However, we present theoretical arguments that using the average of ratios at the second, prevalence-estimation step often has lower mean squared error when the random mixing assumption is violated, which seems likely in practice; this estimator which uses the ratio of averages for degree estimates and the average of ratios for prevalence was proposed early in NSUM development but has largely been unexplored and unused. Simulation results using an example network data set also support these findings. Based on this theoretical and empirical evidence, we suggest that future surveys that use a simple estimator may want to use this mixed estimator, and estimation methods based on this estimator may produce new improvements.
Equivariant neural networks have shown improved performance, expressiveness and sample complexity on symmetrical domains. But for some specific symmetries, representations, and choice of coordinates, the most common point-wise activations, such as ReLU, are not equivariant, hence they cannot be employed in the design of equivariant neural networks. The theorem we present in this paper describes all possible combinations of finite-dimensional representations, choice of coordinates and point-wise activations to obtain an exactly equivariant layer, generalizing and strengthening existing characterizations. Notable cases of practical relevance are discussed as corollaries. Indeed, we prove that rotation-equivariant networks can only be invariant, as it happens for any network which is equivariant with respect to connected compact groups. Then, we discuss implications of our findings when applied to important instances of exactly equivariant networks. First, we completely characterize permutation equivariant networks such as Invariant Graph Networks with point-wise nonlinearities and their geometric counterparts, highlighting a plethora of models whose expressive power and performance are still unknown. Second, we show that feature spaces of disentangled steerable convolutional neural networks are trivial representations.
Post-selection inference has recently been proposed as a way of quantifying uncertainty about detected changepoints. The idea is to run a changepoint detection algorithm, and then re-use the same data to perform a test for a change near each of the detected changes. By defining the p-value for the test appropriately, so that it is conditional on the information used to choose the test, this approach will produce valid p-values. We show how to improve the power of these procedures by conditioning on less information. This gives rise to an ideal selective p-value that is intractable but can be approximated by Monte Carlo. We show that for any Monte Carlo sample size, this procedure produces valid p-values, and empirically that noticeable increase in power is possible with only very modest Monte Carlo sample sizes. Our procedure is easy to implement given existing post-selection inference methods, as we just need to generate perturbations of the data set and re-apply the post-selection method to each of these. On genomic data consisting of human GC content, our procedure increases the number of significant changepoints that are detected from e.g. 17 to 27, when compared to existing methods.
Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural sciences. Today, AI has started to advance natural sciences by improving, accelerating, and enabling our understanding of natural phenomena at a wide range of spatial and temporal scales, giving rise to a new area of research known as AI for science (AI4Science). Being an emerging research paradigm, AI4Science is unique in that it is an enormous and highly interdisciplinary area. Thus, a unified and technical treatment of this field is needed yet challenging. This work aims to provide a technically thorough account of a subarea of AI4Science; namely, AI for quantum, atomistic, and continuum systems. These areas aim at understanding the physical world from the subatomic (wavefunctions and electron density), atomic (molecules, proteins, materials, and interactions), to macro (fluids, climate, and subsurface) scales and form an important subarea of AI4Science. A unique advantage of focusing on these areas is that they largely share a common set of challenges, thereby allowing a unified and foundational treatment. A key common challenge is how to capture physics first principles, especially symmetries, in natural systems by deep learning methods. We provide an in-depth yet intuitive account of techniques to achieve equivariance to symmetry transformations. We also discuss other common technical challenges, including explainability, out-of-distribution generalization, knowledge transfer with foundation and large language models, and uncertainty quantification. To facilitate learning and education, we provide categorized lists of resources that we found to be useful. We strive to be thorough and unified and hope this initial effort may trigger more community interests and efforts to further advance AI4Science.
Recommendation systems have become popular and effective tools to help users discover their interesting items by modeling the user preference and item property based on implicit interactions (e.g., purchasing and clicking). Humans perceive the world by processing the modality signals (e.g., audio, text and image), which inspired researchers to build a recommender system that can understand and interpret data from different modalities. Those models could capture the hidden relations between different modalities and possibly recover the complementary information which can not be captured by a uni-modal approach and implicit interactions. The goal of this survey is to provide a comprehensive review of the recent research efforts on the multimodal recommendation. Specifically, it shows a clear pipeline with commonly used techniques in each step and classifies the models by the methods used. Additionally, a code framework has been designed that helps researchers new in this area to understand the principles and techniques, and easily runs the SOTA models. Our framework is located at: //github.com/enoche/MMRec
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.
Classical machine learning implicitly assumes that labels of the training data are sampled from a clean distribution, which can be too restrictive for real-world scenarios. However, statistical learning-based methods may not train deep learning models robustly with these noisy labels. Therefore, it is urgent to design Label-Noise Representation Learning (LNRL) methods for robustly training deep models with noisy labels. To fully understand LNRL, we conduct a survey study. We first clarify a formal definition for LNRL from the perspective of machine learning. Then, via the lens of learning theory and empirical study, we figure out why noisy labels affect deep models' performance. Based on the theoretical guidance, we categorize different LNRL methods into three directions. Under this unified taxonomy, we provide a thorough discussion of the pros and cons of different categories. More importantly, we summarize the essential components of robust LNRL, which can spark new directions. Lastly, we propose possible research directions within LNRL, such as new datasets, instance-dependent LNRL, and adversarial LNRL. Finally, we envision potential directions beyond LNRL, such as learning with feature-noise, preference-noise, domain-noise, similarity-noise, graph-noise, and demonstration-noise.
Recently, deep multiagent reinforcement learning (MARL) has become a highly active research area as many real-world problems can be inherently viewed as multiagent systems. A particularly interesting and widely applicable class of problems is the partially observable cooperative multiagent setting, in which a team of agents learns to coordinate their behaviors conditioning on their private observations and commonly shared global reward signals. One natural solution is to resort to the centralized training and decentralized execution paradigm. During centralized training, one key challenge is the multiagent credit assignment: how to allocate the global rewards for individual agent policies for better coordination towards maximizing system-level's benefits. In this paper, we propose a new method called Q-value Path Decomposition (QPD) to decompose the system's global Q-values into individual agents' Q-values. Unlike previous works which restrict the representation relation of the individual Q-values and the global one, we leverage the integrated gradient attribution technique into deep MARL to directly decompose global Q-values along trajectory paths to assign credits for agents. We evaluate QPD on the challenging StarCraft II micromanagement tasks and show that QPD achieves the state-of-the-art performance in both homogeneous and heterogeneous multiagent scenarios compared with existing cooperative MARL algorithms.