亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cost models predict the cost of executing given assembly code basic blocks on a specific microarchitecture. Recently, neural cost models have been shown to be fairly accurate and easy to construct. They can replace heavily engineered analytical cost models used in mainstream compiler workflows. However, their black-box nature discourages their adoption. In this work, we develop the first framework, COMET, for generating faithful, generalizable, and intuitive explanations for neural cost models. We generate and compare COMET's explanations for the popular neural cost model, Ithemal against those for an accurate CPU simulation-based cost model, uiCA. Our empirical findings show an inverse correlation between the prediction errors of Ithemal and uiCA and the granularity of basic block features in COMET's explanations for them, thus indicating potential reasons for the higher error of Ithemal with respect to uiCA.

相關內容

As text-conditioned diffusion models (DMs) achieve breakthroughs in image, video, and 3D generation, the research community's focus has shifted to the more challenging task of text-to-4D synthesis, which introduces a temporal dimension to generate dynamic 3D objects. In this context, we identify Score Distillation Sampling (SDS), a widely used technique for text-to-3D synthesis, as a significant hindrance to text-to-4D performance due to its Janus-faced and texture-unrealistic problems coupled with high computational costs. In this paper, we propose \textbf{P}ixel-\textbf{L}evel \textbf{A}lignments for Text-to-\textbf{4D} Gaussian Splatting (\textbf{PLA4D}), a novel method that utilizes text-to-video frames as explicit pixel alignment targets to generate static 3D objects and inject motion into them. Specifically, we introduce Focal Alignment to calibrate camera poses for rendering and GS-Mesh Contrastive Learning to distill geometry priors from rendered image contrasts at the pixel level. Additionally, we develop Motion Alignment using a deformation network to drive changes in Gaussians and implement Reference Refinement for smooth 4D object surfaces. These techniques enable 4D Gaussian Splatting to align geometry, texture, and motion with generated videos at the pixel level. Compared to previous methods, PLA4D produces synthesized outputs with better texture details in less time and effectively mitigates the Janus-faced problem. PLA4D is fully implemented using open-source models, offering an accessible, user-friendly, and promising direction for 4D digital content creation. Our project page: //github.com/MiaoQiaowei/PLA4D.github.io.

Knowledge hypergraph embedding models are usually computationally expensive due to the inherent complex semantic information. However, existing works mainly focus on improving the effectiveness of knowledge hypergraph embedding, making the model architecture more complex and redundant. It is desirable and challenging for knowledge hypergraph embedding to reach a trade-off between model effectiveness and efficiency. In this paper, we propose an end-to-end efficient n-ary knowledge hypergraph embedding model, HyCubE, which designs a novel 3D circular convolutional neural network and the alternate mask stack strategy to enhance the interaction and extraction of feature information comprehensively. Furthermore, our proposed model achieves a better trade-off between effectiveness and efficiency by adaptively adjusting the 3D circular convolutional layer structure to handle different arity knowledge hypergraphs with fewer parameters. In addition, we use 1-N multilinear scoring based on the entity mask mechanism to further accelerate the model training efficiency. Finally, extensive experimental results on all datasets demonstrate that our proposed model consistently outperforms state-of-the-art baselines, with an average improvement of 7.30%-9.53% and a maximum improvement of 33.82% across all metrics. Meanwhile, HyCubE is 4.12x faster, GPU memory usage is 52.19% lower, and the number of parameters is reduced by 85.21% compared with the average metric of the latest state-of-the-art baselines.

In recent years, diffusion models have achieved remarkable success in the realm of high-quality image generation, garnering increased attention. This surge in interest is paralleled by a growing concern over the security threats associated with diffusion models, largely attributed to their susceptibility to malicious exploitation. Notably, recent research has brought to light the vulnerability of diffusion models to backdoor attacks, enabling the generation of specific target images through corresponding triggers. However, prevailing backdoor attack methods rely on manually crafted trigger generation functions, often manifesting as discernible patterns incorporated into input noise, thus rendering them susceptible to human detection. In this paper, we present an innovative and versatile optimization framework designed to acquire invisible triggers, enhancing the stealthiness and resilience of inserted backdoors. Our proposed framework is applicable to both unconditional and conditional diffusion models, and notably, we are the pioneers in demonstrating the backdooring of diffusion models within the context of text-guided image editing and inpainting pipelines. Moreover, we also show that the backdoors in the conditional generation can be directly applied to model watermarking for model ownership verification, which further boosts the significance of the proposed framework. Extensive experiments on various commonly used samplers and datasets verify the efficacy and stealthiness of the proposed framework. Our code is publicly available at //github.com/invisibleTriggerDiffusion/invisible_triggers_for_diffusion.

Privacy, data quality, and data sharing concerns pose a key limitation for tabular data applications. While generating synthetic data resembling the original distribution addresses some of these issues, most applications would benefit from additional customization on the generated data. However, existing synthetic data approaches are limited to particular constraints, e.g., differential privacy (DP) or fairness. In this work, we introduce CuTS, the first customizable synthetic tabular data generation framework. Customization in CuTS is achieved via declarative statistical and logical expressions, supporting a wide range of requirements (e.g., DP or fairness, among others). To ensure high synthetic data quality in the presence of custom specifications, CuTS is pre-trained on the original dataset and fine-tuned on a differentiable loss automatically derived from the provided specifications using novel relaxations. We evaluate CuTS over four datasets and on numerous custom specifications, outperforming state-of-the-art specialized approaches on several tasks while being more general. In particular, at the same fairness level, we achieve 2.3% higher downstream accuracy than the state-of-the-art in fair synthetic data generation on the Adult dataset.

This paper introduces DroneVis, a novel library designed to automate computer vision algorithms on Parrot drones. DroneVis offers a versatile set of features and provides a diverse range of computer vision tasks along with a variety of models to choose from. Implemented in Python, the library adheres to high-quality code standards, facilitating effortless customization and feature expansion according to user requirements. In addition, comprehensive documentation is provided, encompassing usage guidelines and illustrative use cases. Our documentation, code, and examples are available in //github.com/ahmedheakl/drone-vis.

Many scientific problems require to process data in the form of geometric graphs. Unlike generic graph data, geometric graphs exhibit symmetries of translations, rotations, and/or reflections. Researchers have leveraged such inductive bias and developed geometrically equivariant Graph Neural Networks (GNNs) to better characterize the geometry and topology of geometric graphs. Despite fruitful achievements, it still lacks a survey to depict how equivariant GNNs are progressed, which in turn hinders the further development of equivariant GNNs. To this end, based on the necessary but concise mathematical preliminaries, we analyze and classify existing methods into three groups regarding how the message passing and aggregation in GNNs are represented. We also summarize the benchmarks as well as the related datasets to facilitate later researches for methodology development and experimental evaluation. The prospect for future potential directions is also provided.

GAN inversion aims to invert a given image back into the latent space of a pretrained GAN model, for the image to be faithfully reconstructed from the inverted code by the generator. As an emerging technique to bridge the real and fake image domains, GAN inversion plays an essential role in enabling the pretrained GAN models such as StyleGAN and BigGAN to be used for real image editing applications. Meanwhile, GAN inversion also provides insights on the interpretation of GAN's latent space and how the realistic images can be generated. In this paper, we provide an overview of GAN inversion with a focus on its recent algorithms and applications. We cover important techniques of GAN inversion and their applications to image restoration and image manipulation. We further elaborate on some trends and challenges for future directions.

The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.

Graph convolutional networks (GCNs) have recently become one of the most powerful tools for graph analytics tasks in numerous applications, ranging from social networks and natural language processing to bioinformatics and chemoinformatics, thanks to their ability to capture the complex relationships between concepts. At present, the vast majority of GCNs use a neighborhood aggregation framework to learn a continuous and compact vector, then performing a pooling operation to generalize graph embedding for the classification task. These approaches have two disadvantages in the graph classification task: (1)when only the largest sub-graph structure ($k$-hop neighbor) is used for neighborhood aggregation, a large amount of early-stage information is lost during the graph convolution step; (2) simple average/sum pooling or max pooling utilized, which loses the characteristics of each node and the topology between nodes. In this paper, we propose a novel framework called, dual attention graph convolutional networks (DAGCN) to address these problems. DAGCN automatically learns the importance of neighbors at different hops using a novel attention graph convolution layer, and then employs a second attention component, a self-attention pooling layer, to generalize the graph representation from the various aspects of a matrix graph embedding. The dual attention network is trained in an end-to-end manner for the graph classification task. We compare our model with state-of-the-art graph kernels and other deep learning methods. The experimental results show that our framework not only outperforms other baselines but also achieves a better rate of convergence.

We give an overview of recent exciting achievements of deep reinforcement learning (RL). We discuss six core elements, six important mechanisms, and twelve applications. We start with background of machine learning, deep learning and reinforcement learning. Next we discuss core RL elements, including value function, in particular, Deep Q-Network (DQN), policy, reward, model, planning, and exploration. After that, we discuss important mechanisms for RL, including attention and memory, unsupervised learning, transfer learning, multi-agent RL, hierarchical RL, and learning to learn. Then we discuss various applications of RL, including games, in particular, AlphaGo, robotics, natural language processing, including dialogue systems, machine translation, and text generation, computer vision, neural architecture design, business management, finance, healthcare, Industry 4.0, smart grid, intelligent transportation systems, and computer systems. We mention topics not reviewed yet, and list a collection of RL resources. After presenting a brief summary, we close with discussions. Please see Deep Reinforcement Learning, arXiv:1810.06339, for a significant update.

北京阿比特科技有限公司