亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work we consider a relativistic drift-kinetic model for runaway electrons along with a Fokker-Planck operator for small-angle Coulomb collisions, a radiation damping operator, and a secondary knock-on (Boltzmann) collision source. We develop a new scalable fully implicit solver utilizing finite volume and conservative finite difference schemes and dynamic mesh adaptivity. A new data management framework in the PETSc library based on the p4est library is developed to enable simulations with dynamic adaptive mesh refinement (AMR), distributed memory parallelization, and dynamic load balancing of computational work. This framework and the runaway electron solver building on the framework are able to dynamically capture both bulk Maxwellian at the low-energy region and a runaway tail at the high-energy region. To effectively capture features via the AMR algorithm, a new AMR indicator prediction strategy is proposed that is performed alongside the implicit time evolution of the solution. This strategy is complemented by the introduction of computationally cheap feature-based AMR indicators that are analyzed theoretically. Numerical results quantify the advantages of the prediction strategy in better capturing features compared with nonpredictive strategies; and we demonstrate trade-offs regarding computational costs. The robustness with respect to model parameters, algorithmic scalability, and parallel scalability are demonstrated through several benchmark problems including manufactured solutions and solutions of different physics models. We focus on demonstrating the advantages of using implicit time stepping and AMR for runaway electron simulations.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Neural Networks · FAST · Extensibility · state-of-the-art ·
2024 年 5 月 3 日

Using OpenCL-based high-level synthesis, we create a number of spiking neural network (SNN) simulators for the Potjans-Diesmann cortical microcircuit for a high-end Field-Programmable Gate Array (FPGA). Our best simulators simulate the circuit 25\% faster than real-time, require less than 21 nJ per synaptic event, and are bottle-necked by the device's on-chip memory. Speed-wise they compare favorably to the state-of-the-art GPU-based simulators and their energy usage is lower than any other published result. This result is the first for simulating the circuit on a single hardware accelerator. We also extensively analyze the techniques and algorithms we implement our simulators with, many of which can be realized on other types of hardware. Thus, this article is of interest to any researcher or practitioner interested in efficient SNN simulation, whether they target FPGAs or not.

This article presents a deep reinforcement learning-based approach to tackle a persistent surveillance mission requiring a single unmanned aerial vehicle initially stationed at a depot with fuel or time-of-flight constraints to repeatedly visit a set of targets with equal priority. Owing to the vehicle's fuel or time-of-flight constraints, the vehicle must be regularly refueled, or its battery must be recharged at the depot. The objective of the problem is to determine an optimal sequence of visits to the targets that minimizes the maximum time elapsed between successive visits to any target while ensuring that the vehicle never runs out of fuel or charge. We present a deep reinforcement learning algorithm to solve this problem and present the results of numerical experiments that corroborate the effectiveness of this approach in comparison with common-sense greedy heuristics.

Deep learning surrogate models have shown promise in solving partial differential equations (PDEs). Among them, the Fourier neural operator (FNO) achieves good accuracy, and is significantly faster compared to numerical solvers, on a variety of PDEs, such as fluid flows. However, the FNO uses the Fast Fourier transform (FFT), which is limited to rectangular domains with uniform grids. In this work, we propose a new framework, viz., geo-FNO, to solve PDEs on arbitrary geometries. Geo-FNO learns to deform the input (physical) domain, which may be irregular, into a latent space with a uniform grid. The FNO model with the FFT is applied in the latent space. The resulting geo-FNO model has both the computation efficiency of FFT and the flexibility of handling arbitrary geometries. Our geo-FNO is also flexible in terms of its input formats, viz., point clouds, meshes, and design parameters are all valid inputs. We consider a variety of PDEs such as the Elasticity, Plasticity, Euler's, and Navier-Stokes equations, and both forward modeling and inverse design problems. Geo-FNO is $10^5$ times faster than the standard numerical solvers and twice more accurate compared to direct interpolation on existing ML-based PDE solvers such as the standard FNO.

The real-time monitoring of the structural displacement of the Vacuum Vessel (VV) of thermonuclear fusion devices caused by electromagnetic (EM) loads is of great interest. In this paper, Model Order Reduction (MOR) is applied to the Integral Equation Methods (IEM) and the Finite Elements Method (FEM) to develop Electromagnetic and Structural Reduced Order Models (ROMs) compatible with real-time execution which allows for the real-time monitoring of strain and displacement in critical positions of Tokamaks machines. Low-rank compression techniques based on hierarchical matrices are applied to reduce the computational cost during the offline stage when the ROMs are constructed. Numerical results show the accuracy of the approach and demonstrate the compatibility with real-time execution in standard hardware.

The estimation of 6D object poses is a fundamental task in many computer vision applications. Particularly, in high risk scenarios such as human-robot interaction, industrial inspection, and automation, reliable pose estimates are crucial. In the last years, increasingly accurate and robust deep-learning-based approaches for 6D object pose estimation have been proposed. Many top-performing methods are not end-to-end trainable but consist of multiple stages. In the context of deep uncertainty quantification, deep ensembles are considered as state of the art since they have been proven to produce well-calibrated and robust uncertainty estimates. However, deep ensembles can only be applied to methods that can be trained end-to-end. In this work, we propose a method to quantify the uncertainty of multi-stage 6D object pose estimation approaches with deep ensembles. For the implementation, we choose SurfEmb as representative, since it is one of the top-performing 6D object pose estimation approaches in the BOP Challenge 2022. We apply established metrics and concepts for deep uncertainty quantification to evaluate the results. Furthermore, we propose a novel uncertainty calibration score for regression tasks to quantify the quality of the estimated uncertainty.

We design and analyse an energy stable, structure preserving, well-balanced and asymptotic preserving (AP) scheme for the barotropic Euler system with gravity in the anelastic limit. The key to energy stability is the introduction of appropriate velocity shifts in the convective fluxes of mass and momenta. The semi-implicit in time and finite volume in space fully-discrete scheme supports the positivity of density and yields the consistency with the weak solutions of the Euler system upon mesh refinement. The numerical scheme admits the discrete hydrostatic states as solutions and the stability of numerical solutions in terms of the relative energy leads to well-balancing. The AP property of the scheme, i.e. the boundedness of the mesh parameters with respect to the Mach/Froude numbers and the scheme's asymptotic consistency with the anelastic Euler system is rigorously shown on the basis of apriori energy estimates. The numerical scheme is resolved in two steps: by solving a non-linear elliptic problem for the density and a subsequent explicit computation of the velocity. Results from several benchmark case studies are presented to corroborate the proposed claims.

Image-level regression is an important task in Earth observation, where visual domain and label shifts are a core challenge hampering generalization. However, cross-domain regression with remote sensing data remains understudied due to the absence of suited datasets. We introduce a new dataset with aerial and satellite imagery in five countries with three forest-related regression tasks. To match real-world applicative interests, we compare methods through a restrictive setup where no prior on the target domain is available during training, and models are adapted with limited information during testing. Building on the assumption that ordered relationships generalize better, we propose manifold diffusion for regression as a strong baseline for transduction in low-data regimes. Our comparison highlights the comparative advantages of inductive and transductive methods in cross-domain regression.

The problem of optimizing discrete phases in a reconfigurable intelligent surface (RIS) to maximize the received power at a user equipment is addressed. Necessary and sufficient conditions to achieve this maximization are given. These conditions are employed in an algorithm to achieve the maximization. New versions of the algorithm are given that are proven to achieve convergence in N or fewer steps whether the direct link is completely blocked or not, where N is the number of the RIS elements, whereas previously published results achieve this in KN or 2N number of steps where K is the number of discrete phases. Thus, for a discrete-phase RIS, the techniques presented in this paper achieve the optimum received power in the smallest number of steps published in the literature. In addition, in each of those N steps, the techniques presented in this paper determine only one or a small number of phase shifts with a simple elementwise update rule, which result in a substantial reduction of computation time, as compared to the algorithms in the literature. As a secondary result, we define the uniform polar quantization (UPQ) algorithm which is an intuitive quantization algorithm that can approximate the continuous solution with an approximation ratio of sinc^2(1/K) and achieve low time-complexity, given perfect knowledge of the channel.

In the context of the Internet of Things (IoT), reliable and energy-efficient provision of IoT applications has become critical. Equipping IoT systems with tools that enable a flexible, well-performing, and automated way of monitoring and managing IoT edge devices is an essential prerequisite. In current IoT systems, low-power edge appliances have been utilized in a way that can not be controlled and re-configured in a timely manner. Hence, conducting a trade-off solution between manageability, performance and design requirements are demanded. This paper introduces a novel approach for fine-grained monitoring and managing individual micro-services within low-power edge devices, which improves system reliability and energy efficiency. The proposed method enables operational flexibility for IoT edge devices by leveraging a modularization technique. Following a review of existing solutions for remote-managed IoT services, a detailed description of the suggested approach is presented. Also, to explore the essential design principles that must be considered in this approach, the suggested architecture is elaborated in detail. Finally, the advantages of the proposed solution to deal with disruptions are demonstrated in the proof of concept-based experiments.

Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.

北京阿比特科技有限公司