亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we present methodologies for optimal selection for renewable energy sites under a different set of constraints and objectives. We consider two different models for the site-selection problem - coarse-grained and fine-grained, and analyze them to find solutions. We consider multiple different ways to measure the benefits of setting up a site. We provide approximation algorithms with a guaranteed performance bound for two different benefit metrics with the coarse-grained model. For the fine-grained model, we provide a technique utilizing Integer Linear Program to find the optimal solution. We present the results of our extensive experimentation with synthetic data generated from sparsely available real data from solar farms in Arizona.

相關內容

In this note, we give very simple constructions of unique neighbor expander graphs starting from spectral or combinatorial expander graphs of mild expansion. These constructions and their analysis are simple variants of the constructions of LDPC error-correcting codes from expanders, given by Sipser-Spielman\cite{SS96} (and Tanner\cite{Tanner81}), and their analysis. We also show how to obtain expanders with many unique neighbors using similar ideas. There were many exciting results on this topic recently, starting with Asherov-Dinur\cite{AD23} and Hsieh-McKenzie-Mohanty-Paredes\cite{HMMP23}, who gave a similar construction of unique neighbor expander graphs, but using more sophisticated ingredients (such as almost-Ramanujan graphs) and a more involved analysis. Subsequent beautiful works of Cohen-Roth-TaShma\cite{CRT23} and Golowich\cite{Golowich23} gave even stronger objects (lossless expanders), but also using sophisticated ingredients. The main contribution of this work is that we get much more elementary constructions of unique neighbor expanders and with a simpler analysis.

In this paper, we investigate the impact of objects on gender bias in image captioning systems. Our results show that only gender-specific objects have a strong gender bias (e.g., women-lipstick). In addition, we propose a visual semantic-based gender score that measures the degree of bias and can be used as a plug-in for any image captioning system. Our experiments demonstrate the utility of the gender score, since we observe that our score can measure the bias relation between a caption and its related gender; therefore, our score can be used as an additional metric to the existing Object Gender Co-Occ approach. Code and data are publicly available at \url{//github.com/ahmedssabir/GenderScore}.

In this paper, we critically evaluate the capabilities of the state-of-the-art multimodal large language model, i.e., GPT-4 with Vision (GPT-4V), on Visual Question Answering (VQA) task. Our experiments thoroughly assess GPT-4V's proficiency in answering questions paired with images using both pathology and radiology datasets from 11 modalities (e.g. Microscopy, Dermoscopy, X-ray, CT, etc.) and fifteen objects of interests (brain, liver, lung, etc.). Our datasets encompass a comprehensive range of medical inquiries, including sixteen distinct question types. Throughout our evaluations, we devised textual prompts for GPT-4V, directing it to synergize visual and textual information. The experiments with accuracy score conclude that the current version of GPT-4V is not recommended for real-world diagnostics due to its unreliable and suboptimal accuracy in responding to diagnostic medical questions. In addition, we delineate seven unique facets of GPT-4V's behavior in medical VQA, highlighting its constraints within this complex arena. The complete details of our evaluation cases are accessible at //github.com/ZhilingYan/GPT4V-Medical-Report.

In this work, we aim to characterize the statistical complexity of realizable regression both in the PAC learning setting and the online learning setting. Previous work had established the sufficiency of finiteness of the fat shattering dimension for PAC learnability and the necessity of finiteness of the scaled Natarajan dimension, but little progress had been made towards a more complete characterization since the work of Simon (SICOMP '97). To this end, we first introduce a minimax instance optimal learner for realizable regression and propose a novel dimension that both qualitatively and quantitatively characterizes which classes of real-valued predictors are learnable. We then identify a combinatorial dimension related to the Graph dimension that characterizes ERM learnability in the realizable setting. Finally, we establish a necessary condition for learnability based on a combinatorial dimension related to the DS dimension, and conjecture that it may also be sufficient in this context. Additionally, in the context of online learning we provide a dimension that characterizes the minimax instance optimal cumulative loss up to a constant factor and design an optimal online learner for realizable regression, thus resolving an open question raised by Daskalakis and Golowich in STOC '22.

In this paper, we propose a joint single-base localization and communication enhancement scheme for the uplink (UL) integrated sensing and communications (ISAC) system with asynchronism, which can achieve accurate single-base localization of user equipment (UE) and significantly improve the communication reliability despite the existence of timing offset (TO) due to the clock asynchronism between UE and base station (BS). Our proposed scheme integrates the CSI enhancement into the multiple signal classification (MUSIC)-based AoA estimation and thus imposes no extra complexity on the ISAC system. We further exploit a MUSIC-based range estimation method and prove that it can suppress the time-varying TO-related phase terms. Exploiting the AoA and range estimation of UE, we can estimate the location of UE. Finally, we propose a joint CSI and data signals-based localization scheme that can coherently exploit the data and the CSI signals to improve the AoA and range estimation, which further enhances the single-base localization of UE. The extensive simulation results show that the enhanced CSI can achieve equivalent bit error rate performance to the minimum mean square error (MMSE) CSI estimator. The proposed joint CSI and data signals-based localization scheme can achieve decimeter-level localization accuracy despite the existing clock asynchronism and improve the localization mean square error (MSE) by about 8 dB compared with the maximum likelihood (ML)-based benchmark method.

In this work, our goal is to develop a theoretical framework that can eventually be used for analyzing the effectiveness of visual stories such as feature films to comic books. To develop this theoretical framework, we introduce a new story element called moments. Our conjecture is that any linear story such as the story of a feature film can be decomposed into a set of moments that follow each other. Moments are defined as the perception of the actions, interactions, and expressions of all characters or a single character during a given time period. We categorize the moments into two major types: story moments and discourse moments. Each type of moment can further be classified into three types, which we call universal storytelling moments. We believe these universal moments foster or deteriorate the emotional attachment of the audience to a particular character or the story. We present a methodology to catalog the occurrences of these universal moments as they are found in the story. The cataloged moments can be represented using curves or color strips. Therefore, we can visualize a character's journey through the story as either a 3D curve or a color strip. We also demonstrated that both story and discourse moments can be transformed into one lump-sum attraction parameter. The attraction parameter in time provides a function that can be plotted graphically onto a timeline illustrating changes in the emotional attachment of audience to a character or the story. By inspecting these functions the story analyst can analytically decipher the moments in the story where the attachment is being established, maintained, strengthened, or conversely where it is languishing.

Table of contents (ToC) extraction centres on structuring documents in a hierarchical manner. In this paper, we propose a new dataset, ESGDoc, comprising 1,093 ESG annual reports from 563 companies spanning from 2001 to 2022. These reports pose significant challenges due to their diverse structures and extensive length. To address these challenges, we propose a new framework for Toc extraction, consisting of three steps: (1) Constructing an initial tree of text blocks based on reading order and font sizes; (2) Modelling each tree node (or text block) independently by considering its contextual information captured in node-centric subtree; (3) Modifying the original tree by taking appropriate action on each tree node (Keep, Delete, or Move). This construction-modelling-modification (CMM) process offers several benefits. It eliminates the need for pairwise modelling of section headings as in previous approaches, making document segmentation practically feasible. By incorporating structured information, each section heading can leverage both local and long-distance context relevant to itself. Experimental results show that our approach outperforms the previous state-of-the-art baseline with a fraction of running time. Our framework proves its scalability by effectively handling documents of any length.

In this paper, we study a spline collocation method for a numerical solution to the optimal transport problem We mainly solve the \MAE with the second boundary condition numerically by proposing a center matching algorithm. We prove a pointwise convergence of our iterative algorithm under the assumption the boundedness of spline iterates. We use the \MAE with Dirichlet boundary condition and some known solutions to the \MAE with second boundary condition to demonstrate the effectiveness of our algorithm. Then we use our method to solve some real-life problems. One application problem is to use the optimal transportation for the conversion of fisheye view images into standard rectangular images.

In this paper, we examine the biases arising in A/B tests where a firm modifies a continuous parameter, such as price, to estimate the global treatment effect associated to a given performance metric. Such biases emerge from canonical designs and estimators due to interference among market participants. We employ structural modeling and differential calculus to derive intuitive structural characterizations of this bias. We then specialize our general model to a standard revenue management pricing problem. This setting highlights a key potential pitfall in the use of pricing experiments to guide profit maximization: notably, the canonical estimator for the change in profits can have the {\em wrong sign}. In other words, following the guidance of the canonical estimator may lead the firm to move prices in the wrong direction, and thereby decrease profits relative to the status quo. We apply these results to a two-sided market model and show how this ``change of sign" regime depends on model parameters, and discuss structural and practical implications for platform operators.

In this paper, we propose a numerical method to uniformly handle the random genetic drift model for pure drift with or without natural selection and mutation. For pure drift and natural selection case, the Dirac $\delta$ singularity will develop at two boundary ends and the mass lumped at the two ends stands for the fixation probability. For the one-way mutation case, known as Muller's ratchet, the accumulation of deleterious mutations leads to the loss of the fittest gene, the Dirac $\delta$ singularity will spike only at one boundary end, which stands for the fixation of the deleterious gene and loss of the fittest one. For two-way mutation case, the singularity with negative power law may emerge near boundary points. We first rewrite the original model on the probability density function (PDF) to one with respect to the cumulative distribution function (CDF). Dirac $\delta$ singularity of the PDF becomes the discontinuity of the CDF. Then we establish a upwind scheme, which keeps the total probability, is positivity preserving and unconditionally stable. For pure drift, the scheme also keeps the conservation of expectation. It can catch the discontinuous jump of the CDF, then predicts accurately the fixation probability for pure drift with or without natural selection and one-way mutation. For two-way mutation case, it can catch the power law of the singularity. %Moreover, some artificial algorithms or additional boundary criteria is not needed in the numerical simulation. The numerical results show the effectiveness of the scheme.

北京阿比特科技有限公司