In this paper, we critically evaluate the capabilities of the state-of-the-art multimodal large language model, i.e., GPT-4 with Vision (GPT-4V), on Visual Question Answering (VQA) task. Our experiments thoroughly assess GPT-4V's proficiency in answering questions paired with images using both pathology and radiology datasets from 11 modalities (e.g. Microscopy, Dermoscopy, X-ray, CT, etc.) and fifteen objects of interests (brain, liver, lung, etc.). Our datasets encompass a comprehensive range of medical inquiries, including sixteen distinct question types. Throughout our evaluations, we devised textual prompts for GPT-4V, directing it to synergize visual and textual information. The experiments with accuracy score conclude that the current version of GPT-4V is not recommended for real-world diagnostics due to its unreliable and suboptimal accuracy in responding to diagnostic medical questions. In addition, we delineate seven unique facets of GPT-4V's behavior in medical VQA, highlighting its constraints within this complex arena. The complete details of our evaluation cases are accessible at //github.com/ZhilingYan/GPT4V-Medical-Report.
Supervised fine-tuning (SFT) is a crucial step for large language models (LLMs), enabling them to align with human instructions and enhance their capabilities in downstream tasks. When the models are required to align with a broader range of downstream tasks, or there is a desire to notably improve the performance on a specific task, a substantial increase in fine-tuning data often emerges as the solution. However, we find that large-scale increases in instruction data can disrupt the world knowledge previously stored in the LLMs, i.e., world knowledge forgetting. In this paper, we introduce LoRAMoE to address above challenge. The LoRAMoE is a plugin version of Mixture of Experts (MoE). The plugin-form ensures the integrity of world knowledge by freezing the backbone model during the training phase. And we propose the use of localized balancing constraints to coordinate parts of experts for task utilization, meanwhile enables other experts to to fully leverage the world knowledge stored in the models. Experimental results demonstrate that LoRAMoE can reasonly coordinate experts based on data type during inference, and even dramatically increasing instruction data does not result in knowledge forgetting. Moreover, LoRAMoE provides additional benefits for the performance of downstream tasks, indicating the potential of our approach for multi-task learning.
The aim of this paper is to provide a theoretically founded investigation of state-of-the-art learning approaches for inverse problems. We give an extended definition of regularization methods and their convergence in terms of the underlying data distributions, which paves the way for future theoretical studies. Based on a simple spectral learning model previously introduced for supervised learning, we investigate some key properties of different learning paradigms for inverse problems, which can be formulated independently of specific architectures. In particular we investigate the regularization properties, bias, and critical dependence on training data distributions. Moreover, our framework allows to highlight and compare the specific behavior of the different paradigms in the infinite-dimensional limit.
In this article, we introduce LLMind, an innovative AI framework that utilizes large language models (LLMs) as a central orchestrator. The framework integrates LLMs with domain-specific AI modules, enabling IoT devices to collaborate effectively in executing complex tasks. The LLM performs planning and generates control scripts using a reliable and precise language-code transformation approach based on finite state machines (FSMs). The LLM engages in natural conversations with users, employing role-playing techniques to generate contextually appropriate responses. Additionally, users can interact easily with the AI agent via a user-friendly social media platform. The framework also incorporates semantic analysis and response optimization techniques to enhance speed and effectiveness. Ultimately, this framework is designed not only to innovate IoT device control and enrich user experiences but also to foster an intelligent and integrated IoT device ecosystem that evolves and becomes more sophisticated through continuing user and machine interactions.
In this work, we address the problem of directing the text generation of a language model (LM) towards a desired behavior, aligning the generated text with the preferences of the human operator. We propose using another, instruction-tuned language model as a critic reward model in a zero-shot way thanks to the prompt of a Yes-No question that represents the user preferences, without requiring further labeled data. This zero-shot reward model provides the learning signal to further fine-tune the base LM using Reinforcement Learning from AI Feedback (RLAIF); yet our approach is also compatible in other contexts such as quality-diversity search. Extensive evidence of the capabilities of the proposed ZYN framework is provided through experiments in different domains related to text generation, including detoxification; optimizing sentiment of movie reviews, or any other attribute; steering the opinion about a particular topic the model may have; and personalizing prompt generators for text-to-image tasks. Code available at \url{//github.com/vicgalle/zero-shot-reward-models/}.
In this paper, we propose a novel personalized decision support system that combines Theory of Mind (ToM) modeling and explainable Reinforcement Learning (XRL) to provide effective and interpretable interventions. Our method leverages DRL to provide expert action recommendations while incorporating ToM modeling to understand users' mental states and predict their future actions, enabling appropriate timing for intervention. To explain interventions, we use counterfactual explanations based on RL's feature importance and users' ToM model structure. Our proposed system generates accurate and personalized interventions that are easily interpretable by end-users. We demonstrate the effectiveness of our approach through a series of crowd-sourcing experiments in a simulated team decision-making task, where our system outperforms control baselines in terms of task performance. Our proposed approach is agnostic to task environment and RL model structure, therefore has the potential to be generalized to a wide range of applications.
This paper presents a large-scale analysis of the cryptocurrency community on Reddit, shedding light on the intricate relationship between the evolution of their activity, emotional dynamics, and price movements. We analyze over 130M posts on 122 cryptocurrency-related subreddits using temporal analysis, statistical modeling, and emotion detection. While /r/CryptoCurrency and /r/dogecoin are the most active subreddits, we find an overall surge in cryptocurrency-related activity in 2021, followed by a sharp decline. We also uncover a strong relationship in terms of cross-correlation between online activity and the price of various coins, with the changes in the number of posts mostly leading the price changes. Backtesting analysis shows that a straightforward strategy based on the cross-correlation where one buys/sells a coin if the daily number of posts about it is greater/less than the previous would have led to a 3x return on investment. Finally, we shed light on the emotional dynamics of the cryptocurrency communities, finding that joy becomes a prominent indicator during upward market performance, while a decline in the market manifests an increase in anger.
The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.
This paper surveys and organizes research works in a new paradigm in natural language processing, which we dub "prompt-based learning". Unlike traditional supervised learning, which trains a model to take in an input x and predict an output y as P(y|x), prompt-based learning is based on language models that model the probability of text directly. To use these models to perform prediction tasks, the original input x is modified using a template into a textual string prompt x' that has some unfilled slots, and then the language model is used to probabilistically fill the unfilled information to obtain a final string x, from which the final output y can be derived. This framework is powerful and attractive for a number of reasons: it allows the language model to be pre-trained on massive amounts of raw text, and by defining a new prompting function the model is able to perform few-shot or even zero-shot learning, adapting to new scenarios with few or no labeled data. In this paper we introduce the basics of this promising paradigm, describe a unified set of mathematical notations that can cover a wide variety of existing work, and organize existing work along several dimensions, e.g.the choice of pre-trained models, prompts, and tuning strategies. To make the field more accessible to interested beginners, we not only make a systematic review of existing works and a highly structured typology of prompt-based concepts, but also release other resources, e.g., a website //pretrain.nlpedia.ai/ including constantly-updated survey, and paperlist.
Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.