In this paper, we propose a novel personalized decision support system that combines Theory of Mind (ToM) modeling and explainable Reinforcement Learning (XRL) to provide effective and interpretable interventions. Our method leverages DRL to provide expert action recommendations while incorporating ToM modeling to understand users' mental states and predict their future actions, enabling appropriate timing for intervention. To explain interventions, we use counterfactual explanations based on RL's feature importance and users' ToM model structure. Our proposed system generates accurate and personalized interventions that are easily interpretable by end-users. We demonstrate the effectiveness of our approach through a series of crowd-sourcing experiments in a simulated team decision-making task, where our system outperforms control baselines in terms of task performance. Our proposed approach is agnostic to task environment and RL model structure, therefore has the potential to be generalized to a wide range of applications.
In this paper, we introduce a kNN-based regression method that synergizes the scalability and adaptability of traditional non-parametric kNN models with a novel variable selection technique. This method focuses on accurately estimating the conditional mean and variance of random response variables, thereby effectively characterizing conditional distributions across diverse scenarios.Our approach incorporates a robust uncertainty quantification mechanism, leveraging our prior estimation work on conditional mean and variance. The employment of kNN ensures scalable computational efficiency in predicting intervals and statistical accuracy in line with optimal non-parametric rates. Additionally, we introduce a new kNN semi-parametric algorithm for estimating ROC curves, accounting for covariates. For selecting the smoothing parameter k, we propose an algorithm with theoretical guarantees.Incorporation of variable selection enhances the performance of the method significantly over conventional kNN techniques in various modeling tasks. We validate the approach through simulations in low, moderate, and high-dimensional covariate spaces. The algorithm's effectiveness is particularly notable in biomedical applications as demonstrated in two case studies. Concluding with a theoretical analysis, we highlight the consistency and convergence rate of our method over traditional kNN models, particularly when the underlying regression model takes values in a low-dimensional space.
The most famous error-decoding algorithm for convolutional codes is the Viterbi algorithm. In this paper, we present a new reduced complexity version of this algorithm which can be applied to a class of binary convolutional codes with optimum column distances called k-partial simplex convolutional codes.
In this paper, we introduce a novel Distributed Markov Chain Monte Carlo (MCMC) inference method for the Bayesian Non-Parametric Latent Block Model (DisNPLBM), employing the Master/Worker architecture. Our non-parametric co-clustering algorithm divides observations and features into partitions using latent multivariate Gaussian block distributions. The workload on rows is evenly distributed among workers, who exclusively communicate with the master and not among themselves. DisNPLBM demonstrates its impact on cluster labeling accuracy and execution times through experimental results. Moreover, we present a real-use case applying our approach to co-cluster gene expression data. The code source is publicly available at //github.com/redakhoufache/Distributed-NPLBM.
We present a simple argument using Promise Theory and dimensional analysis for the Dunbar scaling hierarchy, supported by recent data from group formation in Wikipedia editing. We show how the assumption of a common priority seeds group alignment until the costs associated with attending to the group outweigh the benefits in a detailed balance scenario. Subject to partial efficiency of implementing promised intentions, we can reproduce a series of compatible rates that balance growth with entropy.
This paper presents a novel solution concept, called BAR Nash Equilibrium (BARNE) and apply it to analyse the Verifier's dilemma, a fundamental problem in blockchain. Our solution concept adapts the Nash equilibrium (NE) to accommodate interactions among Byzantine, altruistic and rational agents, which became known as the BAR setting in the literature. We prove the existence of BARNE in a large class of games and introduce two natural refinements, global and local stability. Using this equilibrium and its refinement, we analyse the free-rider problem in the context of byzantine consensus. We demonstrate that by incorporating fines and forced errors into a standard quorum-based blockchain protocol, we can effectively reestablish honest behavior as a globally stable BARNE.
In this paper, we propose two new performance metrics, coined the Version Innovation Age (VIA) and the Age of Incorrect Version (AoIV) for real-time monitoring of a two-state Markov process over an unreliable channel. We analyze their performance under the change-aware, semantics-aware, and randomized stationary sampling and transmission policies. We derive closed-form expressions for the distribution and the average of VIA, AoIV, and AoII for these policies. We then formulate and solve an optimization problem to minimize the average VIA, subject to constraints on the time-averaged sampling cost and time-averaged reconstruction error. Finally, we compare the performance of various sampling and transmission policies and identify the conditions under which each policy outperforms the others in optimizing the proposed metrics.
In this work, we present a novel actuation strategy for a suspended aerial platform. By utilizing an underactuation approach, we demonstrate the successful oscillation damping of the proposed platform, modeled as a spherical double pendulum. A state estimator is designed in order to obtain the deflection angles of the platform, which uses only onboard IMU measurements. The state estimator is an extended Kalman filter (EKF) with intermittent measurements obtained at different frequencies. An optimal state feedback controller and a PD+ controller are designed in order to dampen the oscillations of the platform in the joint space and task space respectively. The proposed underactuated platform is found to be more energy-efficient than an omnidirectional platform and requires fewer actuators. The effectiveness of our proposed system is validated using both simulations and experimental studies.
Large Language Models have emerged as prime candidates to tackle misinformation mitigation. However, existing approaches struggle with hallucinations and overconfident predictions. We propose an uncertainty quantification framework that leverages both direct confidence elicitation and sampled-based consistency methods to provide better calibration for NLP misinformation mitigation solutions. We first investigate the calibration of sample-based consistency methods that exploit distinct features of consistency across sample sizes and stochastic levels. Next, we evaluate the performance and distributional shift of a robust numeric verbalization prompt across single vs. two-step confidence elicitation procedure. We also compare the performance of the same prompt with different versions of GPT and different numerical scales. Finally, we combine the sample-based consistency and verbalized methods to propose a hybrid framework that yields a better uncertainty estimation for GPT models. Overall, our work proposes novel uncertainty quantification methods that will improve the reliability of Large Language Models in misinformation mitigation applications.
This paper studies the statistical characterization of ground-to-air (G2A) and reconfigurable intelligent surface (RIS)-assisted air-to-ground (A2G) communications with unmanned aerial vehicles (UAVs) in terrestrial and non-terrestrial networks under the impact of channel aging. We first model the G2A and A2G signal-to-noise ratios (SNRs) as non-central complex Gaussian quadratic random variables (RVs) and derive their exact probability density functions, offering a unique characterization for the A2G SNR as the product of two scaled non-central chi-square RVs. Moreover, we also find that, for a large number of RIS elements, the RIS-assisted A2G channel can be characterized as a single Rician fading channel. Our results reveal the presence of channel hardening in A2G communication under low UAV speeds, where we derive the maximum target spectral efficiency (SE) for a system to maintain a consistent required outage level. Meanwhile, high UAV speeds, exceeding 50 m/s, lead to a significant performance degradation, which cannot be mitigated by increasing the number of RIS elements.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.