Multi-agent reinforcement learning (MARL) suffers from the non-stationarity problem, which is the ever-changing targets at every iteration when multiple agents update their policies at the same time. Starting from first principle, in this paper, we manage to solve the non-stationarity problem by proposing bidirectional action-dependent Q-learning (ACE). Central to the development of ACE is the sequential decision-making process wherein only one agent is allowed to take action at one time. Within this process, each agent maximizes its value function given the actions taken by the preceding agents at the inference stage. In the learning phase, each agent minimizes the TD error that is dependent on how the subsequent agents have reacted to their chosen action. Given the design of bidirectional dependency, ACE effectively turns a multiagent MDP into a single-agent MDP. We implement the ACE framework by identifying the proper network representation to formulate the action dependency, so that the sequential decision process is computed implicitly in one forward pass. To validate ACE, we compare it with strong baselines on two MARL benchmarks. Empirical experiments demonstrate that ACE outperforms the state-of-the-art algorithms on Google Research Football and StarCraft Multi-Agent Challenge by a large margin. In particular, on SMAC tasks, ACE achieves 100% success rate on almost all the hard and super-hard maps. We further study extensive research problems regarding ACE, including extension, generalization, and practicability. Code is made available to facilitate further research.
Machine learning (ML) tasks are one of the major workloads in today's edge computing networks. Existing edge-cloud schedulers allocate the requested amounts of resources to each task, falling short of best utilizing the limited edge resources for ML tasks. This paper proposes TapFinger, a distributed scheduler for edge clusters that minimizes the total completion time of ML tasks through co-optimizing task placement and fine-grained multi-resource allocation. To learn the tasks' uncertain resource sensitivity and enable distributed scheduling, we adopt multi-agent reinforcement learning (MARL) and propose several techniques to make it efficient, including a heterogeneous graph attention network as the MARL backbone, a tailored task selection phase in the actor network, and the integration of Bayes' theorem and masking schemes. We first implement a single-task scheduling version, which schedules at most one task each time. Then we generalize to the multi-task scheduling case, in which a sequence of tasks is scheduled simultaneously. Our design can mitigate the expanded decision space and yield fast convergence to optimal scheduling solutions. Extensive experiments using synthetic and test-bed ML task traces show that TapFinger can achieve up to 54.9% reduction in the average task completion time and improve resource efficiency as compared to state-of-the-art schedulers.
Being able to harness the power of large, static datasets for developing autonomous multi-agent systems could unlock enormous value for real-world applications. Many important industrial systems are multi-agent in nature and are difficult to model using bespoke simulators. However, in industry, distributed system processes can often be recorded during operation, and large quantities of demonstrative data can be stored. Offline multi-agent reinforcement learning (MARL) provides a promising paradigm for building effective online controllers from static datasets. However, offline MARL is still in its infancy, and, therefore, lacks standardised benchmarks, baselines and evaluation protocols typically found in more mature subfields of RL. This deficiency makes it difficult for the community to sensibly measure progress. In this work, we aim to fill this gap by releasing \emph{off-the-grid MARL (OG-MARL)}: a framework for generating offline MARL datasets and algorithms. We release an initial set of datasets and baselines for cooperative offline MARL, created using the framework, along with a standardised evaluation protocol. Our datasets provide settings that are characteristic of real-world systems, including complex dynamics, non-stationarity, partial observability, suboptimality and sparse rewards, and are generated from popular online MARL benchmarks. We hope that OG-MARL will serve the community and help steer progress in offline MARL, while also providing an easy entry point for researchers new to the field.
In consumer theory, ranking available objects by means of preference relations yields the most common description of individual choices. However, preference-based models assume that individuals: (1) give their preferences only between pairs of objects; (2) are always able to pick the best preferred object. In many situations, they may be instead choosing out of a set with more than two elements and, because of lack of information and/or incomparability (objects with contradictory characteristics), they may not able to select a single most preferred object. To address these situations, we need a choice-model which allows an individual to express a set-valued choice. Choice functions provide such a mathematical framework. We propose a Gaussian Process model to learn choice functions from choice-data. The proposed model assumes a multiple utility representation of a choice function based on the concept of Pareto rationalization, and derives a strategy to learn both the number and the values of these latent multiple utilities. Simulation experiments demonstrate that the proposed model outperforms the state-of-the-art methods.
Various methods for Multi-Agent Reinforcement Learning (MARL) have been developed with the assumption that agents' policies are based on accurate state information. However, policies learned through Deep Reinforcement Learning (DRL) are susceptible to adversarial state perturbation attacks. In this work, we propose a State-Adversarial Markov Game (SAMG) and make the first attempt to investigate the fundamental properties of MARL under state uncertainties. Our analysis shows that the commonly used solution concepts of optimal agent policy and robust Nash equilibrium do not always exist in SAMGs. To circumvent this difficulty, we consider a new solution concept called robust agent policy, where agents aim to maximize the worst-case expected state value. We prove the existence of robust agent policy for finite state and finite action SAMGs. Additionally, we propose a Robust Multi-Agent Adversarial Actor-Critic (RMA3C) algorithm to learn robust policies for MARL agents under state uncertainties. Our experiments demonstrate that our algorithm outperforms existing methods when faced with state perturbations and greatly improves the robustness of MARL policies. Our code is public on //songyanghan.github.io/what_is_solution/.
Current multilingual semantic parsing (MSP) datasets are almost all collected by translating the utterances in the existing datasets from the resource-rich language to the target language. However, manual translation is costly. To reduce the translation effort, this paper proposes the first active learning procedure for MSP (AL-MSP). AL-MSP selects only a subset from the existing datasets to be translated. We also propose a novel selection method that prioritizes the examples diversifying the logical form structures with more lexical choices, and a novel hyperparameter tuning method that needs no extra annotation cost. Our experiments show that AL-MSP significantly reduces translation costs with ideal selection methods. Our selection method with proper hyperparameters yields better parsing performance than the other baselines on two multilingual datasets.
The complexity of designing reward functions has been a major obstacle to the wide application of deep reinforcement learning (RL) techniques. Describing an agent's desired behaviors and properties can be difficult, even for experts. A new paradigm called reinforcement learning from human preferences (or preference-based RL) has emerged as a promising solution, in which reward functions are learned from human preference labels among behavior trajectories. However, existing methods for preference-based RL are limited by the need for accurate oracle preference labels. This paper addresses this limitation by developing a method for crowd-sourcing preference labels and learning from diverse human preferences. The key idea is to stabilize reward learning through regularization and correction in a latent space. To ensure temporal consistency, a strong constraint is imposed on the reward model that forces its latent space to be close to the prior distribution. Additionally, a confidence-based reward model ensembling method is designed to generate more stable and reliable predictions. The proposed method is tested on a variety of tasks in DMcontrol and Meta-world and has shown consistent and significant improvements over existing preference-based RL algorithms when learning from diverse feedback, paving the way for real-world applications of RL methods.
Large-scale AI systems that combine search and learning have reached super-human levels of performance in game-playing, but have also been shown to fail in surprising ways. The brittleness of such models limits their efficacy and trustworthiness in real-world deployments. In this work, we systematically study one such algorithm, AlphaZero, and identify two phenomena related to the nature of exploration. First, we find evidence of policy-value misalignment -- for many states, AlphaZero's policy and value predictions contradict each other, revealing a tension between accurate move-selection and value estimation in AlphaZero's objective. Further, we find inconsistency within AlphaZero's value function, which causes it to generalize poorly, despite its policy playing an optimal strategy. From these insights we derive VISA-VIS: a novel method that improves policy-value alignment and value robustness in AlphaZero. Experimentally, we show that our method reduces policy-value misalignment by up to 76%, reduces value generalization error by up to 50%, and reduces average value error by up to 55%.
Learning a predictive model of the mean return, or value function, plays a critical role in many reinforcement learning algorithms. Distributional reinforcement learning (DRL) methods instead model the value distribution, which has been shown to improve performance in many settings. In this paper, we model the value distribution as approximately normal using the Markov Chain central limit theorem. We analytically compute quantile bars to provide a new DRL target that is informed by the decrease in standard deviation that occurs over the course of an episode. In addition, we propose a policy update strategy based on uncertainty as measured by structural characteristics of the value distribution not present in the standard value function. The approach we outline is compatible with many DRL structures. We use two representative on-policy algorithms, PPO and TRPO, as testbeds and show that our methods produce performance improvements in continuous control tasks.
Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.
This paper presents a new multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We propose the use of linear and non-linear methods to develop the MODRL framework that includes both single-policy and multi-policy strategies. The experimental results on two benchmark problems including the two-objective deep sea treasure environment and the three-objective mountain car problem indicate that the proposed framework is able to converge to the optimal Pareto solutions effectively. The proposed framework is generic, which allows implementation of different deep reinforcement learning algorithms in different complex environments. This therefore overcomes many difficulties involved with standard multi-objective reinforcement learning (MORL) methods existing in the current literature. The framework creates a platform as a testbed environment to develop methods for solving various problems associated with the current MORL. Details of the framework implementation can be referred to //www.deakin.edu.au/~thanhthi/drl.htm.