Faster-than-Nyquist (FTN) signaling is a nonorthogonal transmission technique, which brings in intentional inter-symbol interference. This way it can significantly enhance spectral efficiency for practical pulse shapes such as the root raised cosine pulses. This paper proposes an achievable rate region for the multiple antenna (MIMO) asynchronous multiple access channel (aMAC) with FTN signaling. The scheme applies waterfilling in the spatial domain and precoding in time. Waterfilling in space provides better power allocation and precoding helps mitigate inter-symbol interference due to asynchronous transmission and FTN. The results show that the gains due to asynchronous transmission and FTN are more emphasized in MIMO aMAC than in single antenna aMAC. Moreover, FTN improves single-user rates, and asynchronous transmission improves the sum-rate, due to better inter-user interference management.
Long range wireless transmission techniques such as LoRa are preferential candidates for a substantial class of IoT applications, as they avoid the complexity of multi-hop wireless forwarding. The existing network solutions for LoRa, however, are not suitable for peer-to-peer communication, which is a key requirement for many IoT applications. In this work, we propose a networking system - 6LoRa, that enables IPv6 communication over LoRa. We present a full stack system implementation on RIOT OS and evaluate the system on a real testbed using realistic application scenarios with CoAP. Our findings confirm that our approach outperforms existing solutions in terms of transmission delay and packet reception ratio at comparable energy consumption.
Adversarial imitation learning (AIL) is a popular method that has recently achieved much success. However, the performance of AIL is still unsatisfactory on the more challenging tasks. We find that one of the major reasons is due to the low quality of AIL discriminator representation. Since the AIL discriminator is trained via binary classification that does not necessarily discriminate the policy from the expert in a meaningful way, the resulting reward might not be meaningful either. We propose a new method called Policy Contrastive Imitation Learning (PCIL) to resolve this issue. PCIL learns a contrastive representation space by anchoring on different policies and generates a smooth cosine-similarity-based reward. Our proposed representation learning objective can be viewed as a stronger version of the AIL objective and provide a more meaningful comparison between the agent and the policy. From a theoretical perspective, we show the validity of our method using the apprenticeship learning framework. Furthermore, our empirical evaluation on the DeepMind Control suite demonstrates that PCIL can achieve state-of-the-art performance. Finally, qualitative results suggest that PCIL builds a smoother and more meaningful representation space for imitation learning.
In this paper, we investigate the spatial-wideband effects in cell-free massive MIMO (CF-mMIMO) systems in mmWave bands. The utilization of mmWave frequencies brings challenges such as signal attenuation and the need for denser networks like ultra-dense networks (UDN) to maintain communication performance. CF-mMIMO is introduced as a solution, where distributed access points (APs) transmit signals to a central processing unit (CPU) for joint processing. CF-mMIMO offers advantages in reducing non-line-of-sight (NLOS) conditions and overcoming signal blockage. We investigate the synchronization problem in CF-mMIMO due to time delays between APs. It proposes a minimum cyclic prefix length to mitigate inter-symbol interference (ISI) in OFDM systems. Furthermore, the spatial correlations of channel responses are analyzed in the frequency-phase domain. The impact of these correlations on system performance is examined. The findings contribute to improving the performance of CF-mMIMO systems and enhancing the effective utilization of mmWave communication.
Representation learning has become a crucial area of research in machine learning, as it aims to discover efficient ways of representing raw data with useful features to increase the effectiveness, scope and applicability of downstream tasks such as classification and prediction. In this paper, we propose a novel method to generate representations for time series-type data. This method relies on ideas from theoretical physics to construct a compact representation in a data-driven way, and it can capture both the underlying structure of the data and task-specific information while still remaining intuitive, interpretable and verifiable. This novel methodology aims to identify linear laws that can effectively capture a shared characteristic among samples belonging to a specific class. By subsequently utilizing these laws to generate a classifier-agnostic representation in a forward manner, they become applicable in a generalized setting. We demonstrate the effectiveness of our approach on the task of ECG signal classification, achieving state-of-the-art performance.
As the complexity of machine learning (ML) models increases and the applications in different (and critical) domains grow, there is a strong demand for more interpretable and trustworthy ML. One straightforward and model-agnostic way to interpret complex ML models is to train surrogate models, such as rule sets and decision trees, that sufficiently approximate the original ones while being simpler and easier-to-explain. Yet, rule sets can become very lengthy, with many if-else statements, and decision tree depth grows rapidly when accurately emulating complex ML models. In such cases, both approaches can fail to meet their core goal, providing users with model interpretability. We tackle this by proposing DeforestVis, a visual analytics tool that offers user-friendly summarization of the behavior of complex ML models by providing surrogate decision stumps (one-level decision trees) generated with the adaptive boosting (AdaBoost) technique. Our solution helps users to explore the complexity vs fidelity trade-off by incrementally generating more stumps, creating attribute-based explanations with weighted stumps to justify decision making, and analyzing the impact of rule overriding on training instance allocation between one or more stumps. An independent test set allows users to monitor the effectiveness of manual rule changes and form hypotheses based on case-by-case investigations. We show the applicability and usefulness of DeforestVis with two use cases and expert interviews with data analysts and model developers.
The spatial intersection join an important spatial query operation, due to its popularity and high complexity. The spatial join pipeline takes as input two collections of spatial objects (e.g., polygons). In the filter step, pairs of object MBRs that intersect are identified and passed to the refinement step for verification of the join predicate on the exact object geometries. The bottleneck of spatial join evaluation is in the refinement step. We introduce APRIL, a powerful intermediate step in the pipeline, which is based on raster interval approximations of object geometries. Our technique applies a sequence of interval joins on 'intervalized' object approximations to determine whether the objects intersect or not. Compared to previous work, APRIL approximations are simpler, occupy much less space, and achieve similar pruning effectiveness at a much higher speed. Besides intersection joins between polygons, APRIL can directly be applied and has high effectiveness for polygonal range queries, within joins, and polygon-linestring joins. By applying a lightweight compression technique, APRIL approximations may occupy even less space than object MBRs. Furthermore, APRIL can be customized to apply on partitioned data and on polygons of varying sizes, rasterized at different granularities. Our last contribution is a novel algorithm that computes the APRIL approximation of a polygon without having to rasterize it in full, which is orders of magnitude faster than the computation of other raster approximations. Experiments on real data demonstrate the effectiveness and efficiency of APRIL; compared to the state-of-the-art intermediate filter, APRIL occupies 2x-8x less space, is 3.5x-8.5x more time-efficient, and reduces the end-to-end join cost up to 3 times.
In this paper, we improve the single-vehicle 3D object detection models using LiDAR by extending their capacity to process point cloud sequences instead of individual point clouds. In this step, we extend our previous work on rectification of the shadow effect in the concatenation of point clouds to boost the detection accuracy of multi-frame detection models. Our extension includes incorporating HD Map and distilling an Oracle model. Next, we further increase the performance of single-vehicle perception using multi-agent collaboration via Vehicle-to-everything (V2X) communication. We devise a simple yet effective collaboration method that achieves better bandwidth-performance tradeoffs than prior arts while minimizing changes made to single-vehicle detection models and assumptions on inter-agent synchronization. Experiments on the V2X-Sim dataset show that our collaboration method achieves 98% performance of the early collaboration while consuming the equivalent amount of bandwidth usage of late collaboration which is 0.03% of early collaboration. The code will be released at //github.com/quan-dao/practical-collab-perception.
Virtualized Radio Access Networks (vRANs) are fully configurable and can be implemented at a low cost over commodity platforms to enable network management flexibility. In this paper, a novel vRAN reconfiguration problem is formulated to jointly reconfigure the functional splits of the base stations (BSs), locations of the virtualized central units (vCUs) and distributed units (vDUs), their resources, and the routing for each BS data flow. The objective is to minimize the long-term total network operation cost while adapting to the varying traffic demands and resource availability. Testbed measurements are performed to study the relationship between the traffic demands and computing resources, which reveals high variance and depends on the platform and its load. Consequently, finding the perfect model of the underlying system is non-trivial. Therefore, to solve the proposed problem, a deep reinforcement learning (RL)-based framework is proposed and developed using model-free RL approaches. Moreover, the problem consists of multiple BSs sharing the same resources, which results in a multi-dimensional discrete action space and leads to a combinatorial number of possible actions. To overcome this curse of dimensionality, action branching architecture, which is an action decomposition method with a shared decision module followed by neural network is combined with Dueling Double Deep Q-network (D3QN) algorithm. Simulations are carried out using an O-RAN compliant model and real traces of the testbed. Our numerical results show that the proposed framework successfully learns the optimal policy that adaptively selects the vRAN configurations, where its learning convergence can be further expedited through transfer learning even in different vRAN systems. It offers significant cost savings by up to 59\% of a static benchmark, 35\% of DDPG with discretization, and 76\% of non-branching D3QN.
Meta reinforcement learning (meta-RL) extracts knowledge from previous tasks and achieves fast adaptation to new tasks. Despite recent progress, efficient exploration in meta-RL remains a key challenge in sparse-reward tasks, as it requires quickly finding informative task-relevant experiences in both meta-training and adaptation. To address this challenge, we explicitly model an exploration policy learning problem for meta-RL, which is separated from exploitation policy learning, and introduce a novel empowerment-driven exploration objective, which aims to maximize information gain for task identification. We derive a corresponding intrinsic reward and develop a new off-policy meta-RL framework, which efficiently learns separate context-aware exploration and exploitation policies by sharing the knowledge of task inference. Experimental evaluation shows that our meta-RL method significantly outperforms state-of-the-art baselines on various sparse-reward MuJoCo locomotion tasks and more complex sparse-reward Meta-World tasks.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.