亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In software development, developers extensively utilize third-party libraries to avoid implementing existing functionalities. When a new third-party library vulnerability is disclosed, project maintainers need to determine whether their projects are affected by the vulnerability, which requires developers to invest substantial effort in assessment. However, existing tools face a series of issues: static analysis tools produce false alarms, dynamic analysis tools require existing tests and test generation tools have low success rates when facing complex vulnerabilities. Vulnerability exploits, as code snippets provided for reproducing vulnerabilities after disclosure, contain a wealth of vulnerability-related information. This study proposes a new method based on vulnerability exploits, called VESTA (Vulnerability Exploit-based Software Testing Auto-Generator), which provides vulnerability exploit tests as the basis for developers to decide whether to update dependencies. VESTA extends the search-based test generation methods by adding a migration step, ensuring the similarity between the generated test and the vulnerability exploit, which increases the likelihood of detecting potential library vulnerabilities in a project. We perform experiments on 30 vulnerabilities disclosed in the past five years, involving 60 vulnerability-project pairs, and compare the experimental results with the baseline method, TRANSFER. The success rate of VESTA is 71.7\% which is a 53.4\% improvement over TRANSFER in the effectiveness of verifying exploitable vulnerabilities.

相關內容

這個新版本的工具會議系列恢復了從1989年到2012年的50個會議的傳統。工具最初是“面向對象語言和系統的技術”,后來發展到包括軟件技術的所有創新方面。今天許多最重要的軟件概念都是在這里首次引入的。2019年TOOLS 50+1在俄羅斯喀山附近舉行,以同樣的創新精神、對所有與軟件相關的事物的熱情、科學穩健性和行業適用性的結合以及歡迎該領域所有趨勢和社區的開放態度,延續了該系列。 官網鏈接: · 相似度 · 無監督 · 代碼 · Engineering ·
2024 年 2 月 6 日

Assessing similarity in source code has gained significant attention in recent years due to its importance in software engineering tasks such as clone detection and code search and recommendation. This work presents a comparative analysis of unsupervised similarity measures for identifying source code clone detection. The goal is to overview the current state-of-the-art techniques, their strengths, and weaknesses. To do that, we compile the existing unsupervised strategies and evaluate their performance on a benchmark dataset to guide software engineers in selecting appropriate methods for their specific use cases. The source code of this study is available at //github.com/jorge-martinez-gil/codesim

With the exponential growth of AI tools that generate source code, understanding software has become crucial. When developers comprehend a program, they may refer to additional contexts to look for information, e.g. program documentation or historical code versions. Therefore, we argue that encoding this additional contextual information could also benefit code representation for deep learning. Recent papers incorporate contextual data (e.g. call hierarchy) into vector representation to address program comprehension problems. This motivates further studies to explore additional contexts, such as version history, to enhance models' understanding of programs. That is, insights from version history enable recognition of patterns in code evolution over time, recurring issues, and the effectiveness of past solutions. Our paper presents preliminary evidence of the potential benefit of encoding contextual information from the version history to predict code clones and perform code classification. We experiment with two representative deep learning models, ASTNN and CodeBERT, to investigate whether combining additional contexts with different aggregations may benefit downstream activities. The experimental result affirms the positive impact of combining version history into source code representation in all scenarios; however, to ensure the technique performs consistently, we need to conduct a holistic investigation on a larger code base using different combinations of contexts, aggregation, and models. Therefore, we propose a research agenda aimed at exploring various aspects of encoding additional context to improve code representation and its optimal utilisation in specific situations.

Large Language Models (LLMs) have gained prominence in various applications, including security. This paper explores the utility of LLMs in scam detection, a critical aspect of cybersecurity. Unlike traditional applications, we propose a novel use case for LLMs to identify scams, such as phishing, advance fee fraud, and romance scams. We present notable security applications of LLMs and discuss the unique challenges posed by scams. Specifically, we outline the key steps involved in building an effective scam detector using LLMs, emphasizing data collection, preprocessing, model selection, training, and integration into target systems. Additionally, we conduct a preliminary evaluation using GPT-3.5 and GPT-4 on a duplicated email, highlighting their proficiency in identifying common signs of phishing or scam emails. The results demonstrate the models' effectiveness in recognizing suspicious elements, but we emphasize the need for a comprehensive assessment across various language tasks. The paper concludes by underlining the importance of ongoing refinement and collaboration with cybersecurity experts to adapt to evolving threats.

We study incremental constituent parsers to assess their capacity to output trees based on prefix representations alone. Guided by strictly left-to-right generative language models and tree-decoding modules, we build parsers that adhere to a strong definition of incrementality across languages. This builds upon work that asserted incrementality, but that mostly only enforced it on either the encoder or the decoder. Finally, we conduct an analysis against non-incremental and partially incremental models.

This work establishes new convergence guarantees for gradient descent in smooth convex optimization via a computer-assisted analysis technique. Our theory allows nonconstant stepsize policies with frequent long steps potentially violating descent by analyzing the overall effect of many iterations at once rather than the typical one-iteration inductions used in most first-order method analyses. We show that long steps, which may increase the objective value in the short term, lead to provably faster convergence in the long term. A conjecture towards proving a faster $O(1/T\log T)$ rate for gradient descent is also motivated along with simple numerical validation.

In many applications, the labeled data at the learner's disposal is subject to privacy constraints and is relatively limited. To derive a more accurate predictor for the target domain, it is often beneficial to leverage publicly available labeled data from an alternative domain, somewhat close to the target domain. This is the modern problem of supervised domain adaptation from a public source to a private target domain. We present two $(\epsilon, \delta)$-differentially private adaptation algorithms for supervised adaptation, for which we make use of a general optimization problem, recently shown to benefit from favorable theoretical learning guarantees. Our first algorithm is designed for regression with linear predictors and shown to solve a convex optimization problem. Our second algorithm is a more general solution for loss functions that may be non-convex but Lipschitz and smooth. While our main objective is a theoretical analysis, we also report the results of several experiments first demonstrating that the non-private versions of our algorithms outperform adaptation baselines and next showing that, for larger values of the target sample size or $\epsilon$, the performance of our private algorithms remains close to that of the non-private formulation.

Many networking tasks now employ deep learning (DL) to solve complex prediction and system optimization problems. However, current design philosophy of DL-based algorithms entails intensive engineering overhead due to the manual design of deep neural networks (DNNs) for different networking tasks. Besides, DNNs tend to achieve poor generalization performance on unseen data distributions/environments. Motivated by the recent success of large language models (LLMs), for the first time, this work studies the LLM adaptation for networking to explore a more sustainable design philosophy. With the massive pre-trained knowledge and powerful inference ability, LLM can serve as the foundation model, and is expected to achieve "one model for all" with even better performance and stronger generalization for various tasks. In this paper, we present NetLLM, the first LLM adaptation framework that efficiently adapts LLMs to solve networking problems. NetLLM addresses many practical challenges in LLM adaptation, from how to process task-specific information with LLMs, to how to improve the efficiency of answer generation and acquiring domain knowledge for networking. Across three networking-related use cases - viewport prediction (VP), adaptive bitrate streaming (ABR) and cluster job scheduling (CJS), we showcase the effectiveness of NetLLM in LLM adaptation for networking. Results show that the adapted LLM surpasses state-of-the-art algorithms by 10.1-36.6% for VP, 14.5-36.6% for ABR, 6.8-41.3% for CJS, and also achieves superior generalization performance.

In recent years, microservices have gained widespread adoption in IT operations due to their scalability, maintenance, and flexibility. However, it becomes challenging for site reliability engineers (SREs) to pinpoint the root cause due to the complex relationships in microservices when facing system malfunctions. Previous research employed structured learning methods (e.g., PC-algorithm) to establish causal relationships and derive root causes from causal graphs. Nevertheless, they ignored the temporal order of time series data and failed to leverage the rich information inherent in the temporal relationships. For instance, in cases where there is a sudden spike in CPU utilization, it can lead to an increase in latency for other microservices. However, in this scenario, the anomaly in CPU utilization occurs before the latency increase, rather than simultaneously. As a result, the PC-algorithm fails to capture such characteristics. To address these challenges, we propose RUN, a novel approach for root cause analysis using neural Granger causal discovery with contrastive learning. RUN enhances the backbone encoder by integrating contextual information from time series, and leverages a time series forecasting model to conduct neural Granger causal discovery. In addition, RUN incorporates Pagerank with a personalization vector to efficiently recommend the top-k root causes. Extensive experiments conducted on the synthetic and real-world microservice-based datasets demonstrate that RUN noticeably outperforms the state-of-the-art root cause analysis methods. Moreover, we provide an analysis scenario for the sock-shop case to showcase the practicality and efficacy of RUN in microservice-based applications. Our code is publicly available at //github.com/zmlin1998/RUN.

Automated industries lead to high quality production, lower manufacturing cost and better utilization of human resources. Robotic manipulator arms have major role in the automation process. However, for complex manipulation tasks, hard coding efficient and safe trajectories is challenging and time consuming. Machine learning methods have the potential to learn such controllers based on expert demonstrations. Despite promising advances, better approaches must be developed to improve safety, reliability, and efficiency of ML methods in both training and deployment phases. This survey aims to review cutting edge technologies and recent trends on ML methods applied to real-world manipulation tasks. After reviewing the related background on ML, the rest of the paper is devoted to ML applications in different domains such as industry, healthcare, agriculture, space, military, and search and rescue. The paper is closed with important research directions for future works.

Recommender systems play a fundamental role in web applications in filtering massive information and matching user interests. While many efforts have been devoted to developing more effective models in various scenarios, the exploration on the explainability of recommender systems is running behind. Explanations could help improve user experience and discover system defects. In this paper, after formally introducing the elements that are related to model explainability, we propose a novel explainable recommendation model through improving the transparency of the representation learning process. Specifically, to overcome the representation entangling problem in traditional models, we revise traditional graph convolution to discriminate information from different layers. Also, each representation vector is factorized into several segments, where each segment relates to one semantic aspect in data. Different from previous work, in our model, factor discovery and representation learning are simultaneously conducted, and we are able to handle extra attribute information and knowledge. In this way, the proposed model can learn interpretable and meaningful representations for users and items. Unlike traditional methods that need to make a trade-off between explainability and effectiveness, the performance of our proposed explainable model is not negatively affected after considering explainability. Finally, comprehensive experiments are conducted to validate the performance of our model as well as explanation faithfulness.

北京阿比特科技有限公司