亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the exponential growth of AI tools that generate source code, understanding software has become crucial. When developers comprehend a program, they may refer to additional contexts to look for information, e.g. program documentation or historical code versions. Therefore, we argue that encoding this additional contextual information could also benefit code representation for deep learning. Recent papers incorporate contextual data (e.g. call hierarchy) into vector representation to address program comprehension problems. This motivates further studies to explore additional contexts, such as version history, to enhance models' understanding of programs. That is, insights from version history enable recognition of patterns in code evolution over time, recurring issues, and the effectiveness of past solutions. Our paper presents preliminary evidence of the potential benefit of encoding contextual information from the version history to predict code clones and perform code classification. We experiment with two representative deep learning models, ASTNN and CodeBERT, to investigate whether combining additional contexts with different aggregations may benefit downstream activities. The experimental result affirms the positive impact of combining version history into source code representation in all scenarios; however, to ensure the technique performs consistently, we need to conduct a holistic investigation on a larger code base using different combinations of contexts, aggregation, and models. Therefore, we propose a research agenda aimed at exploring various aspects of encoding additional context to improve code representation and its optimal utilisation in specific situations.

相關內容

代碼(Code)是專知網的一個重要知識資料文檔板塊,旨在整理收錄論文源代碼、復現代碼,經典工程代碼等,便于用戶查閱下載使用。

Enterprise resource planning (ERP) software brings resources, data together to keep software-flow within business processes in a company. However, cloud computing's cheap, easy and quick management promise pushes business-owners for a transition from monolithic to a data-center/cloud based ERP. Since cloud-ERP development involves a cyclic process, namely planning, implementing, testing and upgrading, its adoption is realized as a deep recurrent neural network problem. Eventually, a classification algorithm based on long short term memory (LSTM) and TOPSIS is proposed to identify and rank, respectively, adoption features. Our theoretical model is validated over a reference model by articulating key players, services, architecture, functionalities. Qualitative survey is conducted among users by considering technology, innovation and resistance issues, to formulate hypotheses on key adoption factors.

With the increasing amount of data available to scientists in disciplines as diverse as bioinformatics, physics, and remote sensing, scientific workflow systems are becoming increasingly important for composing and executing scalable data analysis pipelines. When writing such workflows, users need to specify the resources to be reserved for tasks so that sufficient resources are allocated on the target cluster infrastructure. Crucially, underestimating a task's memory requirements can result in task failures. Therefore, users often resort to overprovisioning, resulting in significant resource wastage and decreased throughput. In this paper, we propose a novel online method that uses monitoring time series data to predict task memory usage in order to reduce the memory wastage of scientific workflow tasks. Our method predicts a task's runtime, divides it into k equally-sized segments, and learns the peak memory value for each segment depending on the total file input size. We evaluate the prototype implementation of our method using workflows from the publicly available nf-core repository, showing an average memory wastage reduction of 29.48% compared to the best state-of-the-art approach.

We introduce a novel neural volumetric pose feature, termed PoseMap, designed to enhance camera localization by encapsulating the information between images and the associated camera poses. Our framework leverages an Absolute Pose Regression (APR) architecture, together with an augmented NeRF module. This integration not only facilitates the generation of novel views to enrich the training dataset but also enables the learning of effective pose features. Additionally, we extend our architecture for self-supervised online alignment, allowing our method to be used and fine-tuned for unlabelled images within a unified framework. Experiments demonstrate that our method achieves 14.28% and 20.51% performance gain on average in indoor and outdoor benchmark scenes, outperforming existing APR methods with state-of-the-art accuracy.

Ensuring the security and reliability of machine learning frameworks is crucial for building trustworthy AI-based systems. Fuzzing, a popular technique in secure software development lifecycle (SSDLC), can be used to develop secure and robust software. Popular machine learning frameworks such as PyTorch and TensorFlow are complex and written in multiple programming languages including C/C++ and Python. We propose a dynamic analysis pipeline for Python projects using the Sydr-Fuzz toolset. Our pipeline includes fuzzing, corpus minimization, crash triaging, and coverage collection. Crash triaging and severity estimation are important steps to ensure that the most critical vulnerabilities are addressed promptly. Furthermore, the proposed pipeline is integrated in GitLab CI. To identify the most vulnerable parts of the machine learning frameworks, we analyze their potential attack surfaces and develop fuzz targets for PyTorch, TensorFlow, and related projects such as h5py. Applying our dynamic analysis pipeline to these targets, we were able to discover 3 new bugs and propose fixes for them.

Many programming frameworks have been introduced to support the development of differentially private software applications. In this chapter, we survey some of the conceptual ideas underlying these frameworks in a way that we hope will be helpful for both practitioners and researchers. For practitioners, the survey can provide a starting point for understanding what features may be valuable when selecting a programming framework. For researchers, it can help organize existing work in a unified way and provide context for understanding new features in future frameworks.

We introduce a new class of hardware trojans called interrupt-resilient trojans (IRTs). Our work is motivated by the observation that hardware trojan attacks on CPUs, even under favorable attack scenarios (e.g., an attacker with local system access), are affected by unpredictability due to non-deterministic context switching events. As we confirm experimentally, these events can lead to race conditions between trigger signals and the CPU events targeted by the trojan payloads (e.g., a CPU memory access), thus affecting the reliability of the attacks. Our work shows that interrupt-resilient trojans can successfully address the problem of non-deterministic triggering in CPUs, thereby providing high reliability guarantees in the implementation of sophisticated hardware trojan attacks. Specifically, we successfully utilize IRTs in different attack scenarios against a Linux-capable CPU design and showcase its resilience against context-switching events. More importantly, we show that our design allows for seamless integration during fabrication stage attacks.We evaluate different strategies for the implementation of our attacks on a tape-out ready high-speed RISC-V microarchitecture in a 28nm commercial technology process and successfully implement them with an average overhead delay of only 20 picoseconds, while leaving the sign-off characteristics of the layout intact. In doing so, we challenge the common wisdom regarding the low flexibility of late supply chain stages (e.g., fabrication) for the insertion of powerful trojans. To promote further research on microprocessor trojans, we open-source our designs and provide the accompanying supporting software logic.

Humans perceive and construct the world as an arrangement of simple parametric models. In particular, we can often describe man-made environments using volumetric primitives such as cuboids or cylinders. Inferring these primitives is important for attaining high-level, abstract scene descriptions. Previous approaches for primitive-based abstraction estimate shape parameters directly and are only able to reproduce simple objects. In contrast, we propose a robust estimator for primitive fitting, which meaningfully abstracts complex real-world environments using cuboids. A RANSAC estimator guided by a neural network fits these primitives to a depth map. We condition the network on previously detected parts of the scene, parsing it one-by-one. To obtain cuboids from single RGB images, we additionally optimise a depth estimation CNN end-to-end. Naively minimising point-to-primitive distances leads to large or spurious cuboids occluding parts of the scene. We thus propose an improved occlusion-aware distance metric correctly handling opaque scenes. Furthermore, we present a neural network based cuboid solver which provides more parsimonious scene abstractions while also reducing inference time. The proposed algorithm does not require labour-intensive labels, such as cuboid annotations, for training. Results on the NYU Depth v2 dataset demonstrate that the proposed algorithm successfully abstracts cluttered real-world 3D scene layouts.

Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

The task of detecting 3D objects in point cloud has a pivotal role in many real-world applications. However, 3D object detection performance is behind that of 2D object detection due to the lack of powerful 3D feature extraction methods. In order to address this issue, we propose to build a 3D backbone network to learn rich 3D feature maps by using sparse 3D CNN operations for 3D object detection in point cloud. The 3D backbone network can inherently learn 3D features from almost raw data without compressing point cloud into multiple 2D images and generate rich feature maps for object detection. The sparse 3D CNN takes full advantages of the sparsity in the 3D point cloud to accelerate computation and save memory, which makes the 3D backbone network achievable. Empirical experiments are conducted on the KITTI benchmark and results show that the proposed method can achieve state-of-the-art performance for 3D object detection.

北京阿比特科技有限公司